SANDRAMSC commited on
Commit
19f7272
1 Parent(s): 83a9328

Add application file

Browse files
Files changed (1) hide show
  1. frontend/app.py +210 -0
frontend/app.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import streamlit as st
3
+ from dotenv import load_dotenv
4
+ from PyPDF2 import PdfReader
5
+ from langchain.text_splitter import CharacterTextSplitter
6
+ from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
7
+ from langchain.vectorstores import FAISS
8
+ from langchain.chat_models import ChatOpenAI
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.chains import ConversationalRetrievalChain
11
+ import os
12
+ import pickle
13
+ from datetime import datetime
14
+ from backend.generate_metadata import extract_metadata, ingest
15
+
16
+
17
+ css = '''
18
+ <style>
19
+ .chat-message {
20
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
21
+ }
22
+ .chat-message.user {
23
+ background-color: #2b313e
24
+ }
25
+ .chat-message.bot {
26
+ background-color: #475063
27
+ }
28
+ .chat-message .avatar {
29
+ width: 20%;
30
+ }
31
+ .chat-message .avatar img {
32
+ max-width: 78px;
33
+ max-height: 78px;
34
+ border-radius: 50%;
35
+ object-fit: cover;
36
+ }
37
+ .chat-message .message {
38
+ width: 80%;
39
+ padding: 0 1.5rem;
40
+ color: #fff;
41
+ }
42
+ '''
43
+ bot_template = '''
44
+ <div class="chat-message bot">
45
+ <div class="avatar">
46
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
47
+ </div>
48
+ <div class="message">{{MSG}}</div>
49
+ </div>
50
+ '''
51
+ user_template = '''
52
+ <div class="chat-message user">
53
+ <div class="avatar">
54
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
55
+ </div>
56
+ <div class="message">{{MSG}}</div>
57
+ </div>
58
+ '''
59
+
60
+
61
+ def get_pdf_text(pdf_docs):
62
+ text = ""
63
+ for pdf in pdf_docs:
64
+ pdf_reader = PdfReader(pdf)
65
+ for page in pdf_reader.pages:
66
+ text += page.extract_text()
67
+ return text
68
+
69
+
70
+ def get_text_chunks(text):
71
+ text_splitter = CharacterTextSplitter(
72
+ separator="\n",
73
+ chunk_size=1000,
74
+ chunk_overlap=200,
75
+ length_function=len
76
+ )
77
+ chunks = text_splitter.split_text(text)
78
+ return chunks
79
+
80
+
81
+ def get_vectorstore(text_chunks):
82
+ embeddings = OpenAIEmbeddings()
83
+ # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
84
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
85
+ return vectorstore
86
+
87
+
88
+ def get_conversation_chain(vectorstore):
89
+ llm = ChatOpenAI()
90
+ # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
91
+
92
+ memory = ConversationBufferMemory(
93
+ memory_key='chat_history', return_messages=True)
94
+ conversation_chain = ConversationalRetrievalChain.from_llm(
95
+ llm=llm,
96
+ retriever=vectorstore.as_retriever(),
97
+ memory=memory
98
+ )
99
+ return conversation_chain
100
+
101
+
102
+ def handle_userinput(user_question):
103
+ response = st.session_state.conversation({'question': user_question})
104
+ st.session_state.chat_history = response['chat_history']
105
+
106
+ for i, message in enumerate(st.session_state.chat_history):
107
+ # Display user message
108
+ if i % 2 == 0:
109
+ st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
110
+ else:
111
+ print(message)
112
+ # Display AI response
113
+ st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
114
+
115
+ # THIS DOESNT WORK, SOMEONE PLS FIX
116
+ # Display source document information if available in the message
117
+ if hasattr(message, 'source') and message.source:
118
+ st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
119
+
120
+
121
+
122
+ def safe_vec_store():
123
+ # USE VECTARA INSTEAD
124
+ os.makedirs('vectorstore', exist_ok=True)
125
+ filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
126
+ file_path = os.path.join('vectorstore', filename)
127
+ vector_store = st.session_state.vectorstore
128
+
129
+ # Serialize and save the entire FAISS object using pickle
130
+ with open(file_path, 'wb') as f:
131
+ pickle.dump(vector_store, f)
132
+
133
+
134
+ def main():
135
+ load_dotenv()
136
+ st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
137
+ st.write(css, unsafe_allow_html=True)
138
+ st.session_state.classify = False
139
+ st.subheader("Your documents")
140
+ pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=not st.session_state.classify)
141
+ filenames = [file.name for file in pdf_docs if file is not None]
142
+
143
+ if st.button("Process"):
144
+ with st.spinner("Processing"):
145
+ if st.session_state.classify:
146
+ # THE CLASSIFICATION APP
147
+ plain_text_doc = ingest(pdf_docs)
148
+
149
+ # NORMAL RAG
150
+ loaded_vec_store = None
151
+ for filename in filenames:
152
+ if ".pkl" in filename:
153
+ file_path = os.path.join('vectorstore', filename)
154
+ with open(file_path, 'rb') as f:
155
+ loaded_vec_store = pickle.load(f)
156
+ raw_text = get_pdf_text(pdf_docs)
157
+ text_chunks = get_text_chunks(raw_text)
158
+ vec = get_vectorstore(text_chunks)
159
+ if loaded_vec_store:
160
+ vec.merge_from(loaded_vec_store)
161
+ st.warning("loaded vectorstore")
162
+ if "vectorstore" in st.session_state:
163
+ vec.merge_from(st.session_state.vectorstore)
164
+ st.warning("merged to existing")
165
+ st.session_state.vectorstore = vec
166
+ st.session_state.conversation = get_conversation_chain(vec)
167
+ st.success("data loaded")
168
+ if st.session_state.classify:
169
+ # THE CLASSIFICATION APP
170
+ classification_result = extract_metadata(plain_text_doc)
171
+ st.write(classification_result)
172
+
173
+
174
+ if "conversation" not in st.session_state:
175
+ st.session_state.conversation = None
176
+ if "chat_history" not in st.session_state:
177
+ st.session_state.chat_history = None
178
+
179
+ st.header("Doc Verify RAG :hospital:")
180
+ user_question = st.text_input("Ask a question about your documents:")
181
+ if user_question:
182
+ handle_userinput(user_question)
183
+
184
+ with st.sidebar:
185
+
186
+ st.subheader("Classification Instrucitons")
187
+ classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True)
188
+ filenames = [file.name for file in classifier_docs if file is not None]
189
+
190
+ if st.button("Process Classification"):
191
+ with st.spinner("Processing"):
192
+ st.session_state.classify = True
193
+ time.sleep(3)
194
+
195
+
196
+ # Save and Load Embeddings
197
+ if st.button("Save Embeddings"):
198
+ if "vectorstore" in st.session_state:
199
+ safe_vec_store()
200
+ # st.session_state.vectorstore.save_local("faiss_index")
201
+ st.sidebar.success("saved")
202
+ else:
203
+ st.sidebar.warning("No embeddings to save. Please process documents first.")
204
+
205
+ if st.button("Load Embeddings"):
206
+ st.warning("this function is not in use, just upload the vectorstore")
207
+
208
+
209
+ if __name__ == '__main__':
210
+ main()