Spaces:
Running
Running
import streamlit as st | |
import logging | |
from .semantic_process import process_semantic_analysis | |
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input | |
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files | |
from ..utils.widget_utils import generate_unique_key | |
logger = logging.getLogger(__name__) | |
def get_translation(t, key, default): | |
return t.get(key, default) | |
def display_semantic_interface(lang_code, nlp_models, t): | |
st.markdown(""" | |
<style> | |
.semantic-initial-message { | |
background-color: #f0f2f6; | |
border-left: 5px solid #4CAF50; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 16px; | |
margin-bottom: 20px; | |
} | |
.stButton > button { | |
width: 100%; | |
height: 3em; | |
} | |
.chat-container { | |
height: 400px; | |
overflow-y: auto; | |
border: 1px solid #ddd; | |
padding: 10px; | |
border-radius: 5px; | |
} | |
.file-management-container, .analysis-container { | |
border: 1px solid #ddd; | |
padding: 10px; | |
border-radius: 5px; | |
margin-bottom: 20px; | |
} | |
.horizontal-list { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 10px; | |
} | |
.graph-container { | |
height: 500px; | |
overflow-y: auto; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown(f""" | |
<div class="semantic-initial-message"> | |
{get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} | |
</div> | |
""", unsafe_allow_html=True) | |
if 'semantic_chatbot' not in st.session_state: | |
st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
# Contenedor para la gestión de archivos | |
with st.container(): | |
st.markdown('<div class="file-management-container">', unsafe_allow_html=True) | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
uploaded_file = st.file_uploader(get_translation(t, 'upload_file', 'Upload File'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) | |
if uploaded_file is not None: | |
file_contents = uploaded_file.getvalue().decode('utf-8') | |
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): | |
st.session_state.file_contents = file_contents | |
st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) | |
st.rerun() | |
else: | |
st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) | |
with col2: | |
user_files = get_user_files(st.session_state.username, 'semantic') | |
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] | |
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) | |
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): | |
file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') | |
if file_contents: | |
st.session_state.file_contents = file_contents | |
st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully')) | |
else: | |
st.error(get_translation(t, 'file_load_error', 'Error loading file')) | |
with col3: | |
if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')): | |
if 'file_contents' in st.session_state: | |
with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')): | |
try: | |
nlp_model = nlp_models[lang_code] | |
concept_graph, entity_graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_model, lang_code) | |
st.session_state.concept_graph = concept_graph | |
st.session_state.entity_graph = entity_graph | |
st.session_state.key_concepts = key_concepts | |
st.success(get_translation(t, 'analysis_completed', 'Analysis completed')) | |
except Exception as e: | |
logger.error(f"Error during analysis: {str(e)}") | |
st.error(f"Error during analysis: {str(e)}") | |
else: | |
st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded')) | |
with col4: | |
if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')): | |
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): | |
if delete_file(st.session_state.username, selected_file, 'semantic'): | |
st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully')) | |
if 'file_contents' in st.session_state: | |
del st.session_state.file_contents | |
st.rerun() | |
else: | |
st.error(get_translation(t, 'file_delete_error', 'Error deleting file')) | |
else: | |
st.error(get_translation(t, 'no_file_selected', 'No file selected')) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Contenedor para la sección de análisis | |
st.markdown('<div class="analysis-container">', unsafe_allow_html=True) | |
col_chat, col_graph = st.columns([1, 1]) | |
with col_chat: | |
st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) | |
chat_container = st.container() | |
with chat_container: | |
chat_history = st.session_state.get('semantic_chat_history', []) | |
for message in chat_history: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) | |
if user_input: | |
chat_history.append({"role": "user", "content": user_input}) | |
if user_input.startswith('/analyze_current'): | |
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) | |
else: | |
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) | |
chat_history.append({"role": "assistant", "content": response}) | |
st.session_state.semantic_chat_history = chat_history | |
with col_graph: | |
st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) | |
# Mostrar conceptos clave y entidades horizontalmente | |
if 'key_concepts' in st.session_state: | |
st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) | |
st.markdown('<div class="horizontal-list">', unsafe_allow_html=True) | |
for concept, freq in st.session_state.key_concepts: | |
st.markdown(f'<span style="margin-right: 10px;">{concept}: {freq:.2f}</span>', unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
if 'entities' in st.session_state: | |
st.write(get_translation(t, 'entities_title', 'Entities')) | |
st.markdown('<div class="horizontal-list">', unsafe_allow_html=True) | |
for entity, type in st.session_state.entities.items(): | |
st.markdown(f'<span style="margin-right: 10px;">{entity}: {type}</span>', unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Usar pestañas para mostrar los gráficos | |
tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) | |
with tab1: | |
if 'concept_graph' in st.session_state: | |
st.pyplot(st.session_state.concept_graph) | |
with tab2: | |
if 'entity_graph' in st.session_state: | |
st.pyplot(st.session_state.entity_graph) | |
st.markdown('</div>', unsafe_allow_html=True) | |
if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): | |
st.session_state.semantic_chat_history = [] | |
st.rerun() |