v4 / modules /morphosyntax /morphosyntax_interface.py
AIdeaText's picture
Update modules/morphosyntax/morphosyntax_interface.py
cf5b64f verified
raw
history blame
7.22 kB
#modules/morphosyntax/morphosyntax_interface.py
import streamlit as st
import spacy_streamlit
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import base64
from .morphosyntax_process import process_morphosyntactic_input, format_analysis_results
from ..utils.widget_utils import generate_unique_key
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
from ..database.chat_db import store_chat_history
from ..database.morphosintaxis_export import export_user_interactions
import logging
logger = logging.getLogger(__name__)
def display_morphosyntax_interface(lang_code, nlp_models, t):
"""
Interfaz para el an谩lisis morfosint谩ctico
"""
morpho_t = t.get('MORPHOSYNTACTIC', {})
#st.title(morpho_t.get('title', 'AIdeaText - Morphological Analysis'))
input_key = f"morphosyntax_input_{lang_code}"
if input_key not in st.session_state:
st.session_state[input_key] = ""
sentence_input = st.text_area(
t['input_label'],
height=150,
placeholder=t['input_placeholder'],
value=st.session_state[input_key],
key=f"text_area_{lang_code}",
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"])
)
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
current_input = st.session_state[input_key]
if current_input:
doc = nlp_models[lang_code](current_input)
# An谩lisis morfosint谩ctico avanzado
advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code])
# Guardar el resultado en el estado de la sesi贸n
st.session_state.morphosyntax_result = {
'doc': doc,
'advanced_analysis': advanced_analysis
}
# Mostrar resultados
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
# Guardar resultados
if store_morphosyntax_result(
st.session_state.username,
current_input,
get_repeated_words_colors(doc),
advanced_analysis['arc_diagram'],
advanced_analysis['pos_analysis'],
advanced_analysis['morphological_analysis'],
advanced_analysis['sentence_structure']
):
st.success(t['success_message'])
else:
st.error(t['error_message'])
else:
st.warning(t['warning_message'])
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None:
# Si hay un resultado guardado, mostrarlo
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
else:
st.info(t['initial_message']) # A帽ade esta traducci贸n a tu diccionario
# Bot贸n de exportaci贸n
if st.button(morpho_t.get('export_button', 'Export Analysis')):
pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax')
st.download_button(
label=morpho_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="morphosyntax_analysis.pdf",
mime="application/pdf"
)
'''
if user_input:
# A帽adir el mensaje del usuario al historial
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input})
# Procesar el input del usuario nuevo al 26-9-2024
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
# Mostrar indicador de carga
with st.spinner(t.get('processing', 'Processing...')):
try:
# Procesar el input del usuario
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
# A帽adir la respuesta al historial
message = {
"role": "assistant",
"content": response
}
if visualizations:
message["visualizations"] = visualizations
st.session_state.morphosyntax_chat_history.append(message)
# Mostrar la respuesta m谩s reciente
with st.chat_message("assistant"):
st.write(response)
if visualizations:
for i, viz in enumerate(visualizations):
st.markdown(f"**Oraci贸n {i+1} del p谩rrafo analizado**")
st.components.v1.html(
f"""
<div style="width: 100%; overflow-x: auto; white-space: nowrap;">
<div style="min-width: 1200px;">
{viz}
</div>
</div>
""",
height=350,
scrolling=True
)
if i < len(visualizations) - 1:
st.markdown("---") # Separador entre diagramas
# Si es un an谩lisis, guardarlo en la base de datos
if user_input.startswith('/analisis_morfosintactico') and result:
store_morphosyntax_result(
st.session_state.username,
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado
result.get('repeated_words', {}),
visualizations,
result.get('pos_analysis', []),
result.get('morphological_analysis', []),
result.get('sentence_structure', [])
)
except Exception as e:
st.error(f"{t['error_processing']}: {str(e)}")
# Forzar la actualizaci贸n de la interfaz
st.rerun()
# Bot贸n para limpiar el historial del chat
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')):
st.session_state.morphosyntax_chat_history = []
st.rerun()
'''
'''
############ MODULO PARA DEPURACI脫N Y PRUEBAS #####################################################
def display_morphosyntax_interface(lang_code, nlp_models, t):
st.subheader(t['morpho_title'])
text_input = st.text_area(
t['warning_message'],
height=150,
key=generate_unique_key("morphosyntax", "text_area")
)
if st.button(
t['results_title'],
key=generate_unique_key("morphosyntax", "analyze_button")
):
if text_input:
# Aqu铆 ir铆a tu l贸gica de an谩lisis morfosint谩ctico
# Por ahora, solo mostraremos un mensaje de placeholder
st.info(t['analysis_placeholder'])
else:
st.warning(t['no_text_warning'])
###
#################################################
'''