Spaces:
Running
Running
# modules/discourse/discourse/discourse_live_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
import pandas as pd | |
import logging | |
import io | |
import matplotlib.pyplot as plt | |
# Configuraci贸n del logger | |
logger = logging.getLogger(__name__) | |
# Importaciones locales | |
from .discourse_process import perform_discourse_analysis | |
from .discourse_interface import display_discourse_results # A帽adida esta importaci贸n | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.discourse_mongo_db import store_student_discourse_result | |
from ..database.chat_mongo_db import store_chat_history, get_chat_history | |
##################################################################################################### | |
def fig_to_bytes(fig): | |
"""Convierte una figura de matplotlib a bytes.""" | |
try: | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') | |
buf.seek(0) | |
return buf.getvalue() | |
except Exception as e: | |
logger.error(f"Error en fig_to_bytes: {str(e)}") | |
return None | |
################################################################################################# | |
def display_discourse_live_interface(lang_code, nlp_models, discourse_t): | |
""" | |
Interfaz para el an谩lisis del discurso en vivo con layout mejorado | |
""" | |
try: | |
if 'discourse_live_state' not in st.session_state: | |
st.session_state.discourse_live_state = { | |
'analysis_count': 0, | |
'current_text1': '', | |
'current_text2': '', | |
'last_result': None, | |
'text_changed': False | |
} | |
# T铆tulo | |
st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos')) | |
# 脕rea de entrada de textos en dos columnas | |
text_col1, text_col2 = st.columns(2) | |
# Texto 1 | |
with text_col1: | |
st.markdown("**Texto 1 (Patr贸n)**") | |
text_input1 = st.text_area( | |
"Texto 1", | |
height=200, | |
key="discourse_live_text1", | |
value=st.session_state.discourse_live_state.get('current_text1', ''), | |
label_visibility="collapsed" | |
) | |
st.session_state.discourse_live_state['current_text1'] = text_input1 | |
# Texto 2 | |
with text_col2: | |
st.markdown("**Texto 2 (Comparaci贸n)**") | |
text_input2 = st.text_area( | |
"Texto 2", | |
height=200, | |
key="discourse_live_text2", | |
value=st.session_state.discourse_live_state.get('current_text2', ''), | |
label_visibility="collapsed" | |
) | |
st.session_state.discourse_live_state['current_text2'] = text_input2 | |
# Bot贸n de an谩lisis centrado | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col1: | |
analyze_button = st.button( | |
discourse_t.get('analyze_button', 'Analizar'), | |
key="discourse_live_analyze", | |
type="primary", | |
icon="馃攳", | |
disabled=not (text_input1 and text_input2), | |
use_container_width=True | |
) | |
# Proceso y visualizaci贸n de resultados | |
if analyze_button and text_input1 and text_input2: | |
try: | |
with st.spinner(discourse_t.get('processing', 'Procesando...')): | |
result = perform_discourse_analysis( | |
text_input1, | |
text_input2, | |
nlp_models[lang_code], | |
lang_code | |
) | |
if result['success']: | |
# Procesar ambos gr谩ficos | |
for graph_key in ['graph1', 'graph2']: | |
if graph_key in result and result[graph_key] is not None: | |
bytes_key = f'{graph_key}_bytes' | |
graph_bytes = fig_to_bytes(result[graph_key]) | |
if graph_bytes: | |
result[bytes_key] = graph_bytes | |
plt.close(result[graph_key]) | |
st.session_state.discourse_live_state['last_result'] = result | |
st.session_state.discourse_live_state['analysis_count'] += 1 | |
store_student_discourse_result( | |
st.session_state.username, | |
text_input1, | |
text_input2, | |
result | |
) | |
# Mostrar resultados | |
st.markdown("---") | |
st.subheader(discourse_t.get('results_title', 'Resultados del An谩lisis')) | |
display_discourse_results(result, lang_code, discourse_t) | |
else: | |
st.error(result.get('message', 'Error en el an谩lisis')) | |
except Exception as e: | |
logger.error(f"Error en an谩lisis: {str(e)}") | |
st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) | |
# Mostrar resultados previos si existen | |
elif 'last_result' in st.session_state.discourse_live_state and \ | |
st.session_state.discourse_live_state['last_result'] is not None: | |
st.markdown("---") | |
st.subheader(discourse_t.get('previous_results', 'Resultados del An谩lisis Anterior')) | |
display_discourse_results( | |
st.session_state.discourse_live_state['last_result'], | |
lang_code, | |
discourse_t | |
) | |
except Exception as e: | |
logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}") | |
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) | |