Spaces:
Running
Running
#semantic_analysis.py | |
import streamlit as st | |
import spacy | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
from collections import Counter, defaultdict | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import logging | |
logger = logging.getLogger(__name__) | |
# Define colors for grammatical categories | |
POS_COLORS = { | |
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
} | |
POS_TRANSLATIONS = { | |
'es': { | |
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', | |
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', | |
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', | |
'VERB': 'Verbo', 'X': 'Otro', | |
}, | |
'en': { | |
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
'VERB': 'Verb', 'X': 'Other', | |
}, | |
'fr': { | |
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', | |
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
'VERB': 'Verbe', 'X': 'Autre', | |
} | |
} | |
ENTITY_LABELS = { | |
'es': { | |
"Personas": "lightblue", | |
"Lugares": "lightcoral", | |
"Inventos": "lightgreen", | |
"Fechas": "lightyellow", | |
"Conceptos": "lightpink" | |
}, | |
'en': { | |
"People": "lightblue", | |
"Places": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
}, | |
'fr': { | |
"Personnes": "lightblue", | |
"Lieux": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
} | |
} | |
############################################################################################################## | |
def perform_semantic_analysis(text, nlp, lang_code): | |
logger.info(f"Starting semantic analysis for language: {lang_code}") | |
try: | |
doc = nlp(text) | |
key_concepts = identify_key_concepts(doc) | |
concept_graph = create_concept_graph(doc, key_concepts) | |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) | |
entities = extract_entities(doc, lang_code) | |
entity_graph = create_entity_graph(entities) | |
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) | |
# Convertir figuras a bytes | |
concept_graph_bytes = fig_to_bytes(concept_graph_fig) | |
entity_graph_bytes = fig_to_bytes(entity_graph_fig) | |
logger.info("Semantic analysis completed successfully") | |
return { | |
'key_concepts': key_concepts, | |
'concept_graph': concept_graph_bytes, | |
'entities': entities, | |
'entity_graph': entity_graph_bytes | |
} | |
except Exception as e: | |
logger.error(f"Error in perform_semantic_analysis: {str(e)}") | |
raise | |
def fig_to_bytes(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
return buf.getvalue() | |
def fig_to_html(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
img_str = base64.b64encode(buf.getvalue()).decode() | |
return f'<img src="data:image/png;base64,{img_str}" />' | |
def identify_key_concepts(doc): | |
logger.info("Identifying key concepts") | |
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) | |
key_concepts = word_freq.most_common(10) | |
return [(concept, float(freq)) for concept, freq in key_concepts] | |
def create_concept_graph(doc, key_concepts): | |
G = nx.Graph() | |
for concept, freq in key_concepts: | |
G.add_node(concept, weight=freq) | |
for sent in doc.sents: | |
sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)] | |
for i, concept1 in enumerate(sent_concepts): | |
for concept2 in sent_concepts[i+1:]: | |
if G.has_edge(concept1, concept2): | |
G[concept1][concept2]['weight'] += 1 | |
else: | |
G.add_edge(concept1, concept2, weight=1) | |
return G | |
def visualize_concept_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G, k=0.5, iterations=50) | |
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
title = { | |
'es': "Relaciones entre Conceptos Clave", | |
'en': "Key Concept Relations", | |
'fr': "Relations entre Concepts Clés" | |
} | |
ax.set_title(title[lang_code], fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
def create_entity_graph(entities): | |
G = nx.Graph() | |
for entity_type, entity_list in entities.items(): | |
for entity in entity_list: | |
G.add_node(entity, type=entity_type) | |
for i, entity1 in enumerate(entity_list): | |
for entity2 in entity_list[i+1:]: | |
G.add_edge(entity1, entity2) | |
return G | |
def visualize_entity_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
for entity_type, color in ENTITY_LABELS[lang_code].items(): | |
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] | |
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) | |
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) | |
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
################################################################################# | |
def create_topic_graph(topics, doc): | |
G = nx.Graph() | |
for topic in topics: | |
G.add_node(topic, weight=doc.text.count(topic)) | |
for i, topic1 in enumerate(topics): | |
for topic2 in topics[i+1:]: | |
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) | |
if weight > 0: | |
G.add_edge(topic1, topic2, weight=weight) | |
return G | |
def visualize_topic_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
########################################################################################### | |
def generate_summary(doc, lang_code): | |
sentences = list(doc.sents) | |
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen | |
return " ".join([sent.text for sent in summary]) | |
def extract_entities(doc, lang_code): | |
entities = defaultdict(list) | |
for ent in doc.ents: | |
if ent.label_ in ENTITY_LABELS[lang_code]: | |
entities[ent.label_].append(ent.text) | |
return dict(entities) | |
def analyze_sentiment(doc, lang_code): | |
positive_words = sum(1 for token in doc if token.sentiment > 0) | |
negative_words = sum(1 for token in doc if token.sentiment < 0) | |
total_words = len(doc) | |
if positive_words > negative_words: | |
return "Positivo" | |
elif negative_words > positive_words: | |
return "Negativo" | |
else: | |
return "Neutral" | |
def extract_topics(doc, lang_code): | |
vectorizer = TfidfVectorizer(stop_words='english', max_features=5) | |
tfidf_matrix = vectorizer.fit_transform([doc.text]) | |
feature_names = vectorizer.get_feature_names_out() | |
return list(feature_names) | |
# Asegúrate de que todas las funciones necesarias estén exportadas | |
__all__ = [ | |
'perform_semantic_analysis', | |
'identify_key_concepts', | |
'create_concept_graph', | |
'visualize_concept_graph', | |
'create_entity_graph', | |
'visualize_entity_graph', | |
'generate_summary', | |
'extract_entities', | |
'analyze_sentiment', | |
'create_topic_graph', | |
'visualize_topic_graph', | |
'extract_topics', | |
'ENTITY_LABELS', | |
'POS_COLORS', | |
'POS_TRANSLATIONS' | |
] |