Spaces:
Running
Running
# modules/discourse/discourse/discourse_interface.py | |
import streamlit as st | |
import pandas as pd | |
import plotly.graph_objects as go | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
from .discourse_process import perform_discourse_analysis | |
from ..database.chat_mongo_db import store_chat_history | |
from ..database.discourse_mongo_db import store_student_discourse_result | |
logger = logging.getLogger(__name__) | |
def display_discourse_interface(lang_code, nlp_models, discourse_t): | |
""" | |
Interfaz para el análisis del discurso | |
Args: | |
lang_code: Código del idioma actual | |
nlp_models: Modelos de spaCy cargados | |
discourse_t: Diccionario de traducciones | |
""" | |
try: | |
# 1. Inicializar estado si no existe | |
if 'discourse_state' not in st.session_state: | |
st.session_state.discourse_state = { | |
'analysis_count': 0, | |
'last_analysis': None, | |
'current_files': None | |
} | |
# 2. Título y descripción | |
st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso')) | |
st.info(discourse_t.get('initial_instruction', | |
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.')) | |
# 3. Área de carga de archivos | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**")) | |
uploaded_file1 = st.file_uploader( | |
discourse_t.get('file_uploader1', "Cargar archivo 1"), | |
type=['txt'], | |
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}" | |
) | |
with col2: | |
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**")) | |
uploaded_file2 = st.file_uploader( | |
discourse_t.get('file_uploader2', "Cargar archivo 2"), | |
type=['txt'], | |
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}" | |
) | |
# 4. Botón de análisis | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col1: | |
analyze_button = st.button( | |
discourse_t.get('discourse_analyze_button', 'Analizar Discurso'), | |
key=generate_unique_key("discourse", "analyze_button"), | |
type="primary", | |
icon="🔍", | |
disabled=not (uploaded_file1 and uploaded_file2), | |
use_container_width=True | |
) | |
# 5. Proceso de análisis | |
if analyze_button and uploaded_file1 and uploaded_file2: | |
try: | |
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')): | |
# Leer contenido de archivos | |
text1 = uploaded_file1.getvalue().decode('utf-8') | |
text2 = uploaded_file2.getvalue().decode('utf-8') | |
# Realizar análisis | |
result = perform_discourse_analysis( | |
text1, | |
text2, | |
nlp_models[lang_code], | |
lang_code | |
) | |
if result['success']: | |
# Guardar estado | |
st.session_state.discourse_result = result | |
st.session_state.discourse_state['analysis_count'] += 1 | |
st.session_state.discourse_state['current_files'] = ( | |
uploaded_file1.name, | |
uploaded_file2.name | |
) | |
# Guardar en base de datos | |
if store_student_discourse_result( | |
st.session_state.username, | |
text1, | |
text2, | |
result | |
): | |
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente')) | |
# Mostrar resultados | |
display_discourse_results(result, lang_code, discourse_t) | |
else: | |
st.error(discourse_t.get('error_message', 'Error al guardar el análisis')) | |
else: | |
st.error(discourse_t.get('analysis_error', 'Error en el análisis')) | |
except Exception as e: | |
logger.error(f"Error en análisis del discurso: {str(e)}") | |
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}')) | |
# 6. Mostrar resultados previos | |
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None: | |
if st.session_state.discourse_state.get('current_files'): | |
st.info( | |
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}') | |
.format(*st.session_state.discourse_state['current_files']) | |
) | |
display_discourse_results( | |
st.session_state.discourse_result, | |
lang_code, | |
discourse_t | |
) | |
except Exception as e: | |
logger.error(f"Error general en interfaz del discurso: {str(e)}") | |
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.')) | |
##################################################################################################################### | |
def display_discourse_results(result, lang_code, discourse_t): | |
""" | |
Muestra los resultados del análisis del discurso | |
""" | |
if not result.get('success'): | |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) | |
return | |
# Estilo CSS | |
st.markdown(""" | |
<style> | |
.concepts-container { | |
display: flex; | |
flex-wrap: nowrap; | |
gap: 8px; | |
padding: 12px; | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
overflow-x: auto; | |
margin-bottom: 15px; | |
white-space: nowrap; | |
} | |
.concept-item { | |
background-color: white; | |
border-radius: 4px; | |
padding: 6px 10px; | |
display: inline-flex; | |
align-items: center; | |
gap: 4px; | |
box-shadow: 0 1px 2px rgba(0,0,0,0.1); | |
flex-shrink: 0; | |
} | |
.concept-name { | |
font-weight: 500; | |
color: #1f2937; | |
font-size: 0.85em; | |
} | |
.concept-freq { | |
color: #6b7280; | |
font-size: 0.75em; | |
} | |
.graph-container { | |
background-color: white; | |
padding: 15px; | |
border-radius: 8px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
margin-top: 10px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
# Documento 1 | |
with col1: | |
st.subheader(discourse_t.get('doc1_title', 'Documento 1')) | |
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts1' in result: | |
concepts_html = f""" | |
<div class="concepts-container"> | |
{''.join([ | |
f'<div class="concept-item"><span class="concept-name">{concept}</span>' | |
f'<span class="concept-freq">({freq:.2f})</span></div>' | |
for concept, freq in result['key_concepts1'] | |
])} | |
</div> | |
""" | |
st.markdown(concepts_html, unsafe_allow_html=True) | |
if 'graph1' in result: | |
st.markdown('<div class="graph-container">', unsafe_allow_html=True) | |
st.pyplot(result['graph1']) | |
# Botones y controles | |
button_col1, spacer_col1 = st.columns([1,4]) | |
with button_col1: | |
if 'graph1_bytes' in result: | |
st.download_button( | |
label="📥 " + discourse_t.get('download_graph', "Download"), | |
data=result['graph1_bytes'], | |
file_name="discourse_graph1.png", | |
mime="image/png", | |
use_container_width=True | |
) | |
# Interpretación como texto normal sin expander | |
st.markdown("**📊 Interpretación del grafo:**") | |
st.markdown(""" | |
- 🔀 Las flechas indican la dirección de la relación entre conceptos | |
- 🎨 Los colores más intensos indican conceptos más centrales en el texto | |
- ⭕ El tamaño de los nodos representa la frecuencia del concepto | |
- ↔️ El grosor de las líneas indica la fuerza de la conexión | |
""") | |
st.markdown('</div>', unsafe_allow_html=True) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Documento 2 | |
with col2: | |
st.subheader(discourse_t.get('doc2_title', 'Documento 2')) | |
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts2' in result: | |
concepts_html = f""" | |
<div class="concepts-container"> | |
{''.join([ | |
f'<div class="concept-item"><span class="concept-name">{concept}</span>' | |
f'<span class="concept-freq">({freq:.2f})</span></div>' | |
for concept, freq in result['key_concepts2'] | |
])} | |
</div> | |
""" | |
st.markdown(concepts_html, unsafe_allow_html=True) | |
if 'graph2' in result: | |
st.markdown('<div class="graph-container">', unsafe_allow_html=True) | |
st.pyplot(result['graph2']) | |
# Botones y controles | |
button_col2, spacer_col2 = st.columns([1,4]) | |
with button_col2: | |
if 'graph2_bytes' in result: | |
st.download_button( | |
label="📥 " + discourse_t.get('download_graph', "Download"), | |
data=result['graph2_bytes'], | |
file_name="discourse_graph2.png", | |
mime="image/png", | |
use_container_width=True | |
) | |
# Interpretación como texto normal sin expander | |
st.markdown("**📊 Interpretación del grafo:**") | |
st.markdown(""" | |
- 🔀 Las flechas indican la dirección de la relación entre conceptos | |
- 🎨 Los colores más intensos indican conceptos más centrales en el texto | |
- ⭕ El tamaño de los nodos representa la frecuencia del concepto | |
- ↔️ El grosor de las líneas indica la fuerza de la conexión | |
""") | |
st.markdown('</div>', unsafe_allow_html=True) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Nota informativa sobre la comparación | |
st.info(discourse_t.get('comparison_note', | |
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.')) |