Spaces:
Running
Running
#modules/semantic/semantic_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import spacy_streamlit | |
import io | |
from io import BytesIO | |
import base64 | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import re | |
import logging | |
# Configuración del logger | |
logger = logging.getLogger(__name__) | |
# Importaciones locales | |
from .semantic_process import ( | |
process_semantic_input, | |
format_semantic_results | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.semantic_mongo_db import store_student_semantic_result | |
from ..database.semantic_export import export_user_interactions | |
def display_semantic_interface(lang_code, nlp_models, semantic_t): | |
""" | |
Interfaz para el análisis semántico | |
Args: | |
lang_code: Código del idioma actual | |
nlp_models: Modelos de spaCy cargados | |
semantic_t: Diccionario de traducciones semánticas | |
""" | |
try: | |
# Inicializar el estado si no existe | |
if 'semantic_analysis_counter' not in st.session_state: | |
st.session_state.semantic_analysis_counter = 0 | |
# Opción para cargar archivo con key única | |
uploaded_file = st.file_uploader( | |
semantic_t.get('file_uploader', 'Upload a text file for analysis'), | |
type=['txt'], | |
key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}" | |
) | |
# Botón de análisis con key única | |
col1, col2, col3 = st.columns([2,1,2]) | |
with col2: | |
analyze_button = st.button( | |
semantic_t.get('analyze_button', 'Analyze text'), | |
key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}", | |
use_container_width=True | |
) | |
if analyze_button and uploaded_file is not None: | |
try: | |
with st.spinner(semantic_t.get('processing', 'Processing...')): | |
text_content = uploaded_file.getvalue().decode('utf-8') | |
analysis_result = process_semantic_input( | |
text_content, | |
lang_code, | |
nlp_models, | |
semantic_t | |
) | |
if analysis_result['success']: | |
st.session_state.semantic_result = analysis_result | |
st.session_state.semantic_analysis_counter += 1 | |
# Guardar en la base de datos | |
if store_student_semantic_result( | |
st.session_state.username, | |
text_content, | |
analysis_result['analysis'] | |
): | |
st.success(semantic_t.get('success_message', 'Analysis saved successfully')) | |
# Mostrar resultados | |
display_semantic_results( | |
analysis_result, | |
lang_code, | |
semantic_t | |
) | |
else: | |
st.error(semantic_t.get('error_message', 'Error saving analysis')) | |
else: | |
st.error(analysis_result['message']) | |
except Exception as e: | |
logger.error(f"Error en análisis semántico: {str(e)}") | |
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) | |
elif analyze_button: | |
st.warning(semantic_t.get('warning_message', 'Please upload a file first')) | |
# Mostrar resultados previos | |
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: | |
display_semantic_results( | |
st.session_state.semantic_result, | |
lang_code, | |
semantic_t | |
) | |
else: | |
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis')) | |
except Exception as e: | |
logger.error(f"Error general en interfaz semántica: {str(e)}") | |
st.error("Se produjo un error. Por favor, intente de nuevo.") | |
def display_semantic_results(result, lang_code, semantic_t): | |
""" | |
Muestra los resultados del análisis semántico en tabs | |
""" | |
if result is None or not result['success']: | |
st.warning(semantic_t.get('no_results', 'No results available')) | |
return | |
analysis = result['analysis'] | |
# Crear tabs para los resultados | |
tab1, tab2 = st.tabs([ | |
semantic_t.get('concepts_tab', 'Key Concepts Analysis'), | |
semantic_t.get('entities_tab', 'Entities Analysis') | |
]) | |
# Tab 1: Conceptos Clave | |
with tab1: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de conceptos | |
with col1: | |
st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) | |
concept_text = "\n".join([ | |
f"• {concept} ({frequency:.2f})" | |
for concept, frequency in analysis['key_concepts'] | |
]) | |
st.markdown(concept_text) | |
# Columna 2: Gráfico de conceptos | |
with col2: | |
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) | |
st.image(analysis['concept_graph']) | |
# Tab 2: Entidades | |
with tab2: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de entidades | |
with col1: | |
st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) | |
if 'entities' in analysis: | |
for entity_type, entities in analysis['entities'].items(): | |
st.markdown(f"**{entity_type}**") | |
st.markdown("• " + "\n• ".join(entities)) | |
# Columna 2: Gráfico de entidades | |
with col2: | |
st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) | |
st.image(analysis['entity_graph']) | |
# Botón de exportación al final | |
col1, col2, col3 = st.columns([2,1,2]) | |
with col2: | |
if st.button( | |
semantic_t.get('export_button', 'Export Analysis'), | |
key=f"semantic_export_{st.session_state.semantic_analysis_counter}", | |
use_container_width=True | |
): | |
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') | |
st.download_button( | |
label=semantic_t.get('download_pdf', 'Download PDF'), | |
data=pdf_buffer, | |
file_name="semantic_analysis.pdf", | |
mime="application/pdf", | |
key=f"semantic_download_{st.session_state.semantic_analysis_counter}" | |
) |