Spaces:
Running
Running
# modules/chatbot/chat_process.py | |
import os | |
import anthropic | |
import logging | |
from typing import Dict, Generator | |
logger = logging.getLogger(__name__) | |
class ChatProcessor: | |
def __init__(self): | |
""" | |
Inicializa el procesador de chat con la API de Claude | |
""" | |
api_key = os.environ.get("ANTHROPIC_API_KEY") | |
if not api_key: | |
raise ValueError("No se encontr贸 la clave API de Anthropic. Aseg煤rate de configurarla en las variables de entorno.") | |
self.client = anthropic.Anthropic(api_key=api_key) | |
self.conversation_history = [] | |
def process_chat_input(self, message: str, lang_code: str) -> Generator[str, None, None]: | |
""" | |
Procesa el mensaje y genera una respuesta | |
""" | |
try: | |
# Agregar mensaje a la historia | |
self.conversation_history.append(f"Human: {message}") | |
full_message = "\n".join(self.conversation_history) | |
# Generar respuesta usando la API de Claude | |
response = self.client.completions.create( | |
model="claude-2", | |
prompt=f"{full_message}\n\nAssistant:", | |
max_tokens_to_sample=300, | |
temperature=0.7, | |
stop_sequences=["Human:"] | |
) | |
# Procesar la respuesta | |
claude_response = response.completion.strip() | |
self.conversation_history.append(f"Assistant: {claude_response}") | |
# Mantener un historial limitado | |
if len(self.conversation_history) > 10: | |
self.conversation_history = self.conversation_history[-10:] | |
# Dividir la respuesta en palabras para streaming | |
words = claude_response.split() | |
for word in words: | |
yield word + " " | |
except Exception as e: | |
logger.error(f"Error en process_chat_input: {str(e)}") | |
yield f"Error: {str(e)}" | |
def get_conversation_history(self) -> list: | |
""" | |
Retorna el historial de la conversaci贸n | |
""" | |
return self.conversation_history | |
def clear_history(self): | |
""" | |
Limpia el historial de la conversaci贸n | |
""" | |
self.conversation_history = [] |