Spaces:
Sleeping
Sleeping
# modules/semantic/semantic_live_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
import pandas as pd | |
import logging | |
# Configuración del logger | |
logger = logging.getLogger(__name__) | |
# Importaciones locales | |
from .semantic_process import ( | |
process_semantic_input, | |
format_semantic_results | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.semantic_mongo_db import store_student_semantic_result | |
from ..database.chat_mongo_db import store_chat_history, get_chat_history | |
def display_semantic_live_interface(lang_code, nlp_models, semantic_t): | |
""" | |
Interfaz para el análisis semántico en vivo | |
Args: | |
lang_code: Código del idioma actual | |
nlp_models: Modelos de spaCy cargados | |
semantic_t: Diccionario de traducciones semánticas | |
""" | |
try: | |
# 1. Inicializar el estado de la sesión para el análisis en vivo | |
if 'semantic_live_state' not in st.session_state: | |
st.session_state.semantic_live_state = { | |
'analysis_count': 0, | |
'last_analysis': None, | |
'current_text': '' | |
} | |
# 2. Crear dos columnas | |
col1, col2 = st.columns(2) | |
# Columna izquierda: Entrada de texto | |
with col1: | |
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto')) | |
# Área de texto para input | |
text_input = st.text_area( | |
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'), | |
height=400, | |
key=f"semantic_live_text_{st.session_state.semantic_live_state['analysis_count']}" | |
) | |
# Botón de análisis | |
analyze_button = st.button( | |
semantic_t.get('analyze_button', 'Analizar'), | |
key=f"semantic_live_analyze_{st.session_state.semantic_live_state['analysis_count']}", | |
type="primary", | |
icon="🔍", | |
disabled=not text_input, | |
use_container_width=True | |
) | |
# Columna derecha: Visualización de resultados | |
with col2: | |
st.subheader(semantic_t.get('live_results', 'Resultados en vivo')) | |
# Procesar análisis cuando se presiona el botón | |
if analyze_button and text_input: | |
try: | |
with st.spinner(semantic_t.get('processing', 'Procesando...')): | |
# Realizar análisis | |
analysis_result = process_semantic_input( | |
text_input, | |
lang_code, | |
nlp_models, | |
semantic_t | |
) | |
if analysis_result['success']: | |
# Guardar resultado | |
st.session_state.semantic_live_result = analysis_result | |
st.session_state.semantic_live_state['analysis_count'] += 1 | |
# Guardar en base de datos | |
store_student_semantic_result( | |
st.session_state.username, | |
text_input, | |
analysis_result['analysis'] | |
) | |
# Mostrar gráfico de conceptos | |
if 'concept_graph' in analysis_result['analysis'] and analysis_result['analysis']['concept_graph'] is not None: | |
st.image(analysis_result['analysis']['concept_graph']) | |
else: | |
st.info(semantic_t.get('no_graph', 'No hay gráfico disponible')) | |
# Mostrar tabla de conceptos clave | |
if 'key_concepts' in analysis_result['analysis'] and analysis_result['analysis']['key_concepts']: | |
st.subheader(semantic_t.get('key_concepts', 'Conceptos Clave')) | |
df = pd.DataFrame( | |
analysis_result['analysis']['key_concepts'], | |
columns=[ | |
semantic_t.get('concept', 'Concepto'), | |
semantic_t.get('frequency', 'Frecuencia') | |
] | |
) | |
st.dataframe( | |
df, | |
hide_index=True, | |
column_config={ | |
semantic_t.get('frequency', 'Frecuencia'): st.column_config.NumberColumn( | |
format="%.2f" | |
) | |
} | |
) | |
else: | |
st.error(analysis_result['message']) | |
except Exception as e: | |
logger.error(f"Error en análisis semántico en vivo: {str(e)}") | |
st.error(semantic_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) | |
except Exception as e: | |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}") | |
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) |