Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| # modules/studentact/current_situation_interface.py | |
| import streamlit as st | |
| import logging | |
| from ..utils.widget_utils import generate_unique_key | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from ..database.current_situation_mongo_db import store_current_situation_result | |
| from ..database.writing_progress_mongo_db import ( | |
| store_writing_baseline, | |
| store_writing_progress, | |
| get_writing_baseline, | |
| get_writing_progress, | |
| get_latest_writing_metrics | |
| ) | |
| from .current_situation_analysis import ( | |
| analyze_text_dimensions, | |
| analyze_clarity, | |
| analyze_vocabulary_diversity, | |
| analyze_cohesion, | |
| analyze_structure, | |
| get_dependency_depths, | |
| normalize_score, | |
| generate_sentence_graphs, | |
| generate_word_connections, | |
| generate_connection_paths, | |
| create_vocabulary_network, | |
| create_syntax_complexity_graph, | |
| create_cohesion_heatmap | |
| ) | |
| # Configuración del estilo de matplotlib para el gráfico de radar | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['axes.grid'] = True | |
| plt.rcParams['axes.spines.top'] = False | |
| plt.rcParams['axes.spines.right'] = False | |
| logger = logging.getLogger(__name__) | |
| #################################### | |
| TEXT_TYPES = { | |
| 'academic_article': { | |
| 'name': 'Artículo Académico', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.70, 'target': 0.85}, | |
| 'structure': {'min': 0.75, 'target': 0.90}, | |
| 'cohesion': {'min': 0.65, 'target': 0.80}, | |
| 'clarity': {'min': 0.70, 'target': 0.85} | |
| } | |
| }, | |
| 'student_essay': { | |
| 'name': 'Trabajo Universitario', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.60, 'target': 0.75}, | |
| 'structure': {'min': 0.65, 'target': 0.80}, | |
| 'cohesion': {'min': 0.55, 'target': 0.70}, | |
| 'clarity': {'min': 0.60, 'target': 0.75} | |
| } | |
| }, | |
| 'general_communication': { | |
| 'name': 'Comunicación General', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.50, 'target': 0.65}, | |
| 'structure': {'min': 0.55, 'target': 0.70}, | |
| 'cohesion': {'min': 0.45, 'target': 0.60}, | |
| 'clarity': {'min': 0.50, 'target': 0.65} | |
| } | |
| } | |
| } | |
| #################################### | |
| ANALYSIS_DIMENSION_MAPPING = { | |
| 'morphosyntactic': { | |
| 'primary': ['vocabulary', 'clarity'], | |
| 'secondary': ['structure'], | |
| 'tools': ['arc_diagrams', 'word_repetition'] | |
| }, | |
| 'semantic': { | |
| 'primary': ['cohesion', 'structure'], | |
| 'secondary': ['vocabulary'], | |
| 'tools': ['concept_graphs', 'semantic_networks'] | |
| }, | |
| 'discourse': { | |
| 'primary': ['cohesion', 'structure'], | |
| 'secondary': ['clarity'], | |
| 'tools': ['comparative_analysis'] | |
| } | |
| } | |
| #################################### | |
| def display_current_situation_interface(lang_code, nlp_models, t): | |
| """ | |
| Interfaz con columnas de texto y resultados distribuidas equitativamente. | |
| """ | |
| # Inicializar estados si no existen | |
| if 'text_base' not in st.session_state: | |
| st.session_state.text_base = "" | |
| if 'text_iteration' not in st.session_state: | |
| st.session_state.text_iteration = "" | |
| if 'show_base_results' not in st.session_state: | |
| st.session_state.show_base_results = False | |
| if 'show_iteration_results' not in st.session_state: | |
| st.session_state.show_iteration_results = False | |
| if 'base_doc' not in st.session_state: | |
| st.session_state.base_doc = None | |
| if 'iteration_doc' not in st.session_state: | |
| st.session_state.iteration_doc = None | |
| if 'base_metrics' not in st.session_state: | |
| st.session_state.base_metrics = None | |
| if 'iteration_metrics' not in st.session_state: | |
| st.session_state.iteration_metrics = None | |
| try: | |
| # Container principal con cuatro columnas | |
| with st.container(): | |
| # Crear las cuatro columnas con distribución equitativa | |
| text_base_col, metrics_base_col, text_iter_col, metrics_iter_col = st.columns([3,2,3,2], gap="small") | |
| # COLUMNA 1: Texto Base | |
| with text_base_col: | |
| text_base = st.text_area( | |
| t.get('input_prompt_base', "Escribe o pega el texto base aquí:"), | |
| height=400, | |
| key="text_area_base", | |
| value=st.session_state.text_base, | |
| help="Este texto servirá como línea base para la comparación" | |
| ) | |
| # Manejar cambios en el texto base | |
| if text_base != st.session_state.text_base: | |
| st.session_state.text_base = text_base | |
| st.session_state.show_base_results = False | |
| if st.button( | |
| t.get('analyze_base_button', "Establecer Línea Base"), | |
| type="primary", | |
| disabled=not text_base.strip(), | |
| use_container_width=True, | |
| ): | |
| try: | |
| with st.spinner(t.get('processing_base', "Analizando línea base...")): | |
| doc = nlp_models[lang_code](text_base) | |
| metrics = analyze_text_dimensions(doc) | |
| storage_success = store_current_situation_result( | |
| username=st.session_state.username, | |
| text=text_base, | |
| metrics=metrics, | |
| feedback=None, | |
| analysis_type='base' | |
| ) | |
| if not storage_success: | |
| logger.warning("No se pudo guardar el análisis base en la base de datos") | |
| st.session_state.base_doc = doc | |
| st.session_state.base_metrics = metrics | |
| st.session_state.show_base_results = True | |
| except Exception as e: | |
| logger.error(f"Error en análisis base: {str(e)}") | |
| st.error(t.get('analysis_error', "Error al analizar el texto base")) | |
| # COLUMNA 2: Resultados Base | |
| with metrics_base_col: | |
| if st.session_state.show_base_results and st.session_state.base_metrics is not None: | |
| st.markdown("### Métricas Base") | |
| display_results( | |
| metrics=st.session_state.base_metrics, | |
| text_type=st.session_state.get('current_text_type', 'student_essay') | |
| ) | |
| # COLUMNA 3: Texto Iteración | |
| with text_iter_col: | |
| text_iter = st.text_area( | |
| t.get('input_prompt_iter', "Escribe la nueva versión del texto:"), | |
| height=400, | |
| key="text_area_iter", | |
| value=st.session_state.text_iteration, | |
| help="Este texto será comparado con la línea base", | |
| disabled=not st.session_state.show_base_results | |
| ) | |
| # Manejar cambios en el texto de iteración | |
| if text_iter != st.session_state.text_iteration: | |
| st.session_state.text_iteration = text_iter | |
| st.session_state.show_iteration_results = False | |
| if st.button( | |
| t.get('analyze_iter_button', "Analizar Iteración"), | |
| type="primary", | |
| disabled=not text_iter.strip() or not st.session_state.show_base_results, | |
| use_container_width=True, | |
| ): | |
| try: | |
| with st.spinner(t.get('processing_iter', "Analizando iteración...")): | |
| doc = nlp_models[lang_code](text_iter) | |
| metrics = analyze_text_dimensions(doc) | |
| storage_success = store_current_situation_result( | |
| username=st.session_state.username, | |
| text=text_iter, | |
| metrics=metrics, | |
| feedback=None, | |
| analysis_type='iteration' | |
| ) | |
| if not storage_success: | |
| logger.warning("No se pudo guardar el análisis de iteración en la base de datos") | |
| st.session_state.iteration_doc = doc | |
| st.session_state.iteration_metrics = metrics | |
| st.session_state.show_iteration_results = True | |
| except Exception as e: | |
| logger.error(f"Error en análisis de iteración: {str(e)}") | |
| st.error(t.get('analysis_error', "Error al analizar la iteración")) | |
| # COLUMNA 4: Resultados Iteración | |
| with metrics_iter_col: | |
| if st.session_state.show_iteration_results and st.session_state.iteration_metrics is not None: | |
| st.markdown("### Métricas Iteración") | |
| display_results( | |
| metrics=st.session_state.iteration_metrics, | |
| text_type=st.session_state.get('current_text_type', 'student_essay') | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error en interfaz principal: {str(e)}") | |
| st.error("Ocurrió un error al cargar la interfaz") | |
| ################################### | |
| def display_metrics_column(metrics, title): | |
| """Muestra columna de métricas con formato consistente""" | |
| # st.markdown(f"#### Métricas {title}") | |
| for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: | |
| value = metrics[dimension]['normalized_score'] | |
| if value < 0.6: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif value < 0.8: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| st.metric( | |
| dimension.title(), | |
| f"{value:.2f}", | |
| status, | |
| delta_color=color | |
| ) | |
| ################################### | |
| def display_baseline_interface(lang_code, nlp_models, t): | |
| """Interfaz para establecer línea base""" | |
| try: | |
| st.markdown("### Establecer Línea Base") | |
| text_input = st.text_area( | |
| "Texto para línea base", | |
| height=300, | |
| help="Este texto servirá como punto de referencia para medir tu progreso" | |
| ) | |
| if st.button("Establecer como línea base", type="primary"): | |
| with st.spinner("Analizando texto base..."): | |
| # Analizar el texto | |
| doc = nlp_models[lang_code](text_input) | |
| metrics = analyze_text_dimensions(doc) | |
| # Guardar como línea base | |
| success = store_writing_baseline( | |
| username=st.session_state.username, | |
| metrics=metrics, | |
| text=text_input | |
| ) | |
| if success: | |
| st.success("Línea base establecida con éxito") | |
| # Mostrar el gráfico radar inicial | |
| metrics_config = prepare_metrics_config(metrics) | |
| display_radar_chart(metrics_config, TEXT_TYPES['student_essay']['thresholds']) | |
| else: | |
| st.error("Error al guardar la línea base") | |
| except Exception as e: | |
| logger.error(f"Error en interfaz de línea base: {str(e)}") | |
| st.error("Error al establecer línea base") | |
| ################################### | |
| def display_comparison_interface(lang_code, nlp_models, t): | |
| """Interfaz para comparar progreso""" | |
| try: | |
| # Obtener línea base | |
| baseline = get_writing_baseline(st.session_state.username) | |
| if not baseline: | |
| st.warning("Primero debes establecer una línea base") | |
| return | |
| # Crear dos columnas | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown("### Línea Base") | |
| st.text_area( | |
| "Texto original", | |
| value=baseline['text'], | |
| disabled=True, | |
| height=200 | |
| ) | |
| with col2: | |
| st.markdown("### Nuevo Texto") | |
| current_text = st.text_area( | |
| "Ingresa el nuevo texto a comparar", | |
| height=200 | |
| ) | |
| if st.button("Analizar progreso", type="primary"): | |
| with st.spinner("Analizando progreso..."): | |
| # Analizar texto actual | |
| doc = nlp_models[lang_code](current_text) | |
| current_metrics = analyze_text_dimensions(doc) | |
| # Mostrar comparación | |
| display_comparison_results( | |
| baseline_metrics=baseline['metrics'], | |
| current_metrics=current_metrics | |
| ) | |
| # Opción para guardar progreso | |
| if st.button("Guardar este progreso"): | |
| success = store_writing_progress( | |
| username=st.session_state.username, | |
| metrics=current_metrics, | |
| text=current_text | |
| ) | |
| if success: | |
| st.success("Progreso guardado exitosamente") | |
| else: | |
| st.error("Error al guardar el progreso") | |
| except Exception as e: | |
| logger.error(f"Error en interfaz de comparación: {str(e)}") | |
| st.error("Error al mostrar comparación") | |
| ################################### | |
| def display_comparison_results(baseline_metrics, current_metrics): | |
| """Muestra comparación entre línea base y métricas actuales""" | |
| # Crear columnas para métricas y gráfico | |
| metrics_col, graph_col = st.columns([1, 1.5]) | |
| with metrics_col: | |
| for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: | |
| baseline = baseline_metrics[dimension]['normalized_score'] | |
| current = current_metrics[dimension]['normalized_score'] | |
| delta = current - baseline | |
| st.metric( | |
| dimension.title(), | |
| f"{current:.2f}", | |
| f"{delta:+.2f}", | |
| delta_color="normal" if delta >= 0 else "inverse" | |
| ) | |
| # Sugerir herramientas de mejora | |
| if delta < 0: | |
| suggest_improvement_tools(dimension) | |
| with graph_col: | |
| display_radar_chart_comparison( | |
| baseline_metrics, | |
| current_metrics | |
| ) | |
| ################################### | |
| def suggest_improvement_tools(dimension): | |
| """Sugiere herramientas basadas en la dimensión""" | |
| suggestions = [] | |
| for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): | |
| if dimension in mapping['primary']: | |
| suggestions.extend(mapping['tools']) | |
| st.info(f"Herramientas sugeridas para mejorar {dimension}:") | |
| for tool in suggestions: | |
| st.write(f"- {tool}") | |
| ################################### | |
| def prepare_metrics_config(metrics, text_type='student_essay'): | |
| """ | |
| Prepara la configuración de métricas en el mismo formato que display_results. | |
| Args: | |
| metrics: Diccionario con las métricas analizadas | |
| text_type: Tipo de texto para los umbrales | |
| Returns: | |
| list: Lista de configuraciones de métricas | |
| """ | |
| # Obtener umbrales según el tipo de texto | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| # Usar la misma estructura que en display_results | |
| return [ | |
| { | |
| 'label': "Vocabulario", | |
| 'key': 'vocabulary', | |
| 'value': metrics['vocabulary']['normalized_score'], | |
| 'help': "Riqueza y variedad del vocabulario", | |
| 'thresholds': thresholds['vocabulary'] | |
| }, | |
| { | |
| 'label': "Estructura", | |
| 'key': 'structure', | |
| 'value': metrics['structure']['normalized_score'], | |
| 'help': "Organización y complejidad de oraciones", | |
| 'thresholds': thresholds['structure'] | |
| }, | |
| { | |
| 'label': "Cohesión", | |
| 'key': 'cohesion', | |
| 'value': metrics['cohesion']['normalized_score'], | |
| 'help': "Conexión y fluidez entre ideas", | |
| 'thresholds': thresholds['cohesion'] | |
| }, | |
| { | |
| 'label': "Claridad", | |
| 'key': 'clarity', | |
| 'value': metrics['clarity']['normalized_score'], | |
| 'help': "Facilidad de comprensión del texto", | |
| 'thresholds': thresholds['clarity'] | |
| } | |
| ] | |
| ################################### | |
| def display_results(metrics, text_type=None): | |
| """ | |
| Muestra los resultados del análisis: métricas verticalmente y gráfico radar. | |
| """ | |
| try: | |
| # Usar valor por defecto si no se especifica tipo | |
| text_type = text_type or 'student_essay' | |
| # Obtener umbrales según el tipo de texto | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| # Crear dos columnas para las métricas y el gráfico | |
| metrics_col, graph_col = st.columns([1, 1.5]) | |
| # Columna de métricas | |
| with metrics_col: | |
| metrics_config = [ | |
| { | |
| 'label': "Vocabulario", | |
| 'key': 'vocabulary', | |
| 'value': metrics['vocabulary']['normalized_score'], | |
| 'help': "Riqueza y variedad del vocabulario", | |
| 'thresholds': thresholds['vocabulary'] | |
| }, | |
| { | |
| 'label': "Estructura", | |
| 'key': 'structure', | |
| 'value': metrics['structure']['normalized_score'], | |
| 'help': "Organización y complejidad de oraciones", | |
| 'thresholds': thresholds['structure'] | |
| }, | |
| { | |
| 'label': "Cohesión", | |
| 'key': 'cohesion', | |
| 'value': metrics['cohesion']['normalized_score'], | |
| 'help': "Conexión y fluidez entre ideas", | |
| 'thresholds': thresholds['cohesion'] | |
| }, | |
| { | |
| 'label': "Claridad", | |
| 'key': 'clarity', | |
| 'value': metrics['clarity']['normalized_score'], | |
| 'help': "Facilidad de comprensión del texto", | |
| 'thresholds': thresholds['clarity'] | |
| } | |
| ] | |
| # Mostrar métricas | |
| for metric in metrics_config: | |
| value = metric['value'] | |
| if value < metric['thresholds']['min']: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif value < metric['thresholds']['target']: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| st.metric( | |
| metric['label'], | |
| f"{value:.2f}", | |
| f"{status} (Meta: {metric['thresholds']['target']:.2f})", | |
| delta_color=color, | |
| help=metric['help'] | |
| ) | |
| st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
| # Gráfico radar en la columna derecha | |
| with graph_col: | |
| display_radar_chart(metrics_config, thresholds) | |
| except Exception as e: | |
| logger.error(f"Error mostrando resultados: {str(e)}") | |
| st.error("Error al mostrar los resultados") | |
| ###################################### | |
| def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): | |
| """ | |
| Muestra el gráfico radar con los resultados. | |
| Args: | |
| metrics_config: Configuración actual de métricas | |
| thresholds: Umbrales para las métricas | |
| baseline_metrics: Métricas de línea base (opcional) | |
| """ | |
| try: | |
| # Preparar datos para el gráfico | |
| categories = [m['label'] for m in metrics_config] | |
| values_current = [m['value'] for m in metrics_config] | |
| min_values = [m['thresholds']['min'] for m in metrics_config] | |
| target_values = [m['thresholds']['target'] for m in metrics_config] | |
| # Crear y configurar gráfico | |
| fig = plt.figure(figsize=(8, 8)) | |
| ax = fig.add_subplot(111, projection='polar') | |
| # Configurar radar | |
| angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] | |
| angles += angles[:1] | |
| values_current += values_current[:1] | |
| min_values += min_values[:1] | |
| target_values += target_values[:1] | |
| # Configurar ejes | |
| ax.set_xticks(angles[:-1]) | |
| ax.set_xticklabels(categories, fontsize=10) | |
| circle_ticks = np.arange(0, 1.1, 0.2) | |
| ax.set_yticks(circle_ticks) | |
| ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
| ax.set_ylim(0, 1) | |
| # Dibujar áreas de umbrales | |
| ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, | |
| label='Mínimo', alpha=0.5) | |
| ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, | |
| label='Meta', alpha=0.5) | |
| ax.fill_between(angles, target_values, [1]*len(angles), | |
| color='#2ecc71', alpha=0.1) | |
| ax.fill_between(angles, [0]*len(angles), min_values, | |
| color='#e74c3c', alpha=0.1) | |
| # Si hay línea base, dibujarla primero | |
| if baseline_metrics is not None: | |
| values_baseline = [baseline_metrics[m['key']]['normalized_score'] | |
| for m in metrics_config] | |
| values_baseline += values_baseline[:1] | |
| ax.plot(angles, values_baseline, '#888888', linewidth=2, | |
| label='Línea base', linestyle='--') | |
| ax.fill(angles, values_baseline, '#888888', alpha=0.1) | |
| # Dibujar valores actuales | |
| label = 'Actual' if baseline_metrics else 'Tu escritura' | |
| color = '#3498db' if baseline_metrics else '#3498db' | |
| ax.plot(angles, values_current, color, linewidth=2, label=label) | |
| ax.fill(angles, values_current, color, alpha=0.2) | |
| # Ajustar leyenda | |
| legend_handles = [] | |
| if baseline_metrics: | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#888888', linestyle='--', | |
| label='Línea base'), | |
| plt.Line2D([], [], color='#3498db', label='Actual') | |
| ]) | |
| else: | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#3498db', label='Tu escritura') | |
| ]) | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), | |
| plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') | |
| ]) | |
| ax.legend( | |
| handles=legend_handles, | |
| loc='upper right', | |
| bbox_to_anchor=(1.3, 1.1), | |
| fontsize=10, | |
| frameon=True, | |
| facecolor='white', | |
| edgecolor='none', | |
| shadow=True | |
| ) | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| plt.close() | |
| except Exception as e: | |
| logger.error(f"Error mostrando gráfico radar: {str(e)}") | |
| st.error("Error al mostrar el gráfico") | |
| ####################################### | 
