Update modules/discourse_analysis.py
Browse files- modules/discourse_analysis.py +16 -15
modules/discourse_analysis.py
CHANGED
@@ -12,25 +12,26 @@ def compare_semantic_analysis(text1, text2, nlp, lang):
|
|
12 |
G1, pos_counts1 = create_semantic_graph(doc1, lang)
|
13 |
G2, pos_counts2 = create_semantic_graph(doc2, lang)
|
14 |
|
15 |
-
# Create
|
16 |
-
|
|
|
17 |
|
18 |
# Draw the first graph
|
19 |
pos1 = nx.spring_layout(G1, k=0.7, iterations=50)
|
20 |
nx.draw(G1, pos1, ax=ax1, node_color=[POS_COLORS.get(G1.nodes[node]['pos'], '#CCCCCC') for node in G1.nodes()],
|
21 |
-
with_labels=True, node_size=
|
22 |
-
arrows=True, arrowsize=
|
23 |
-
nx.draw_networkx_edge_labels(G1, pos1, edge_labels=nx.get_edge_attributes(G1, 'label'), font_size=
|
24 |
|
25 |
# Draw the second graph
|
26 |
pos2 = nx.spring_layout(G2, k=0.7, iterations=50)
|
27 |
nx.draw(G2, pos2, ax=ax2, node_color=[POS_COLORS.get(G2.nodes[node]['pos'], '#CCCCCC') for node in G2.nodes()],
|
28 |
-
with_labels=True, node_size=
|
29 |
-
arrows=True, arrowsize=
|
30 |
-
nx.draw_networkx_edge_labels(G2, pos2, edge_labels=nx.get_edge_attributes(G2, 'label'), font_size=
|
31 |
|
32 |
-
ax1.set_title("Documento 1: Relaciones Semánticas Relevantes", fontsize=
|
33 |
-
ax2.set_title("Documento 2: Relaciones Semánticas Relevantes", fontsize=
|
34 |
|
35 |
ax1.axis('off')
|
36 |
ax2.axis('off')
|
@@ -39,13 +40,13 @@ def compare_semantic_analysis(text1, text2, nlp, lang):
|
|
39 |
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
40 |
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
41 |
for pos in ['NOUN', 'VERB']]
|
42 |
-
ax1.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=
|
43 |
-
ax2.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=
|
44 |
|
45 |
plt.tight_layout()
|
46 |
|
47 |
-
return
|
48 |
|
49 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
50 |
-
|
51 |
-
return
|
|
|
12 |
G1, pos_counts1 = create_semantic_graph(doc1, lang)
|
13 |
G2, pos_counts2 = create_semantic_graph(doc2, lang)
|
14 |
|
15 |
+
# Create two separate figures
|
16 |
+
fig1, ax1 = plt.subplots(figsize=(36, 27))
|
17 |
+
fig2, ax2 = plt.subplots(figsize=(36, 27))
|
18 |
|
19 |
# Draw the first graph
|
20 |
pos1 = nx.spring_layout(G1, k=0.7, iterations=50)
|
21 |
nx.draw(G1, pos1, ax=ax1, node_color=[POS_COLORS.get(G1.nodes[node]['pos'], '#CCCCCC') for node in G1.nodes()],
|
22 |
+
with_labels=True, node_size=8000, font_size=16, font_weight='bold',
|
23 |
+
arrows=True, arrowsize=30, width=3, edge_color='gray')
|
24 |
+
nx.draw_networkx_edge_labels(G1, pos1, edge_labels=nx.get_edge_attributes(G1, 'label'), font_size=14, ax=ax1)
|
25 |
|
26 |
# Draw the second graph
|
27 |
pos2 = nx.spring_layout(G2, k=0.7, iterations=50)
|
28 |
nx.draw(G2, pos2, ax=ax2, node_color=[POS_COLORS.get(G2.nodes[node]['pos'], '#CCCCCC') for node in G2.nodes()],
|
29 |
+
with_labels=True, node_size=8000, font_size=16, font_weight='bold',
|
30 |
+
arrows=True, arrowsize=30, width=3, edge_color='gray')
|
31 |
+
nx.draw_networkx_edge_labels(G2, pos2, edge_labels=nx.get_edge_attributes(G2, 'label'), font_size=14, ax=ax2)
|
32 |
|
33 |
+
ax1.set_title("Documento 1: Relaciones Semánticas Relevantes", fontsize=28, fontweight='bold')
|
34 |
+
ax2.set_title("Documento 2: Relaciones Semánticas Relevantes", fontsize=28, fontweight='bold')
|
35 |
|
36 |
ax1.axis('off')
|
37 |
ax2.axis('off')
|
|
|
40 |
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
|
41 |
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
|
42 |
for pos in ['NOUN', 'VERB']]
|
43 |
+
ax1.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=16)
|
44 |
+
ax2.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, 1), fontsize=16)
|
45 |
|
46 |
plt.tight_layout()
|
47 |
|
48 |
+
return fig1, fig2
|
49 |
|
50 |
def perform_discourse_analysis(text1, text2, nlp, lang):
|
51 |
+
graph1, graph2 = compare_semantic_analysis(text1, text2, nlp, lang)
|
52 |
+
return graph1, graph2
|