|
|
|
import logging |
|
import os |
|
from azure.cosmos import CosmosClient |
|
from azure.cosmos.exceptions import CosmosHttpResponseError |
|
from pymongo import MongoClient |
|
import certifi |
|
from datetime import datetime |
|
import io |
|
import base64 |
|
import matplotlib.pyplot as plt |
|
from matplotlib.figure import Figure |
|
import bcrypt |
|
print(f"Bcrypt version: {bcrypt.__version__}") |
|
import uuid |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
application_requests_container = None |
|
cosmos_client = None |
|
user_database = None |
|
user_container = None |
|
user_feedback_container = None |
|
|
|
|
|
mongo_client = None |
|
mongo_db = None |
|
analysis_collection = None |
|
chat_collection = None |
|
|
|
|
|
|
|
def initialize_database_connections(): |
|
try: |
|
print("Iniciando conexión a MongoDB") |
|
mongodb_success = initialize_mongodb_connection() |
|
print(f"Conexión a MongoDB: {'exitosa' if mongodb_success else 'fallida'}") |
|
except Exception as e: |
|
print(f"Error al conectar con MongoDB: {str(e)}") |
|
mongodb_success = False |
|
|
|
try: |
|
print("Iniciando conexión a Cosmos DB SQL API") |
|
sql_success = initialize_cosmos_sql_connection() |
|
print(f"Conexión a Cosmos DB SQL API: {'exitosa' if sql_success else 'fallida'}") |
|
except Exception as e: |
|
print(f"Error al conectar con Cosmos DB SQL API: {str(e)}") |
|
sql_success = False |
|
|
|
return { |
|
"mongodb": mongodb_success, |
|
"cosmos_sql": sql_success |
|
} |
|
|
|
|
|
def initialize_cosmos_sql_connection(): |
|
global cosmos_client, user_database, user_container, application_requests_container, user_feedback_container |
|
logger.info("Initializing Cosmos DB SQL API connection") |
|
try: |
|
cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") |
|
cosmos_key = os.environ.get("COSMOS_KEY") |
|
logger.info(f"Cosmos Endpoint: {cosmos_endpoint}") |
|
logger.info(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}") |
|
|
|
if not cosmos_endpoint or not cosmos_key: |
|
logger.error("COSMOS_ENDPOINT or COSMOS_KEY environment variables are not set") |
|
raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") |
|
|
|
cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) |
|
user_database = cosmos_client.get_database_client("user_database") |
|
user_container = user_database.get_container_client("users") |
|
application_requests_container = user_database.get_container_client("application_requests") |
|
user_feedback_container = user_database.get_container_client("user_feedback") |
|
|
|
logger.info(f"user_container initialized: {user_container is not None}") |
|
logger.info(f"application_requests_container initialized: {application_requests_container is not None}") |
|
logger.info(f"user_feedback_container initialized: {user_feedback_container is not None}") |
|
|
|
logger.info("Conexión a Cosmos DB SQL API exitosa") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}", exc_info=True) |
|
return False |
|
|
|
|
|
def initialize_mongodb_connection(): |
|
global mongo_client, mongo_db, analysis_collection, chat_collection |
|
try: |
|
cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") |
|
if not cosmos_mongodb_connection_string: |
|
logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") |
|
return False |
|
|
|
mongo_client = MongoClient(cosmos_mongodb_connection_string, |
|
tls=True, |
|
tlsCAFile=certifi.where(), |
|
retryWrites=False, |
|
serverSelectionTimeoutMS=5000, |
|
connectTimeoutMS=10000, |
|
socketTimeoutMS=10000) |
|
|
|
mongo_client.admin.command('ping') |
|
|
|
mongo_db = mongo_client['aideatext_db'] |
|
analysis_collection = mongo_db['text_analysis'] |
|
chat_collection = mongo_db['chat_history'] |
|
|
|
|
|
mongo_client.admin.command('ping') |
|
|
|
logger.info("Conexión a Cosmos DB MongoDB API exitosa") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) |
|
return False |
|
|
|
|
|
def create_user(username, password, role): |
|
global user_container |
|
try: |
|
print(f"Attempting to create user: {username} with role: {role}") |
|
if user_container is None: |
|
print("Error: user_container is None. Attempting to reinitialize connection.") |
|
if not initialize_cosmos_sql_connection(): |
|
raise Exception("Failed to initialize SQL connection") |
|
|
|
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') |
|
print(f"Password hashed successfully for user: {username}") |
|
user_data = { |
|
'id': username, |
|
'password': hashed_password, |
|
'role': role, |
|
'created_at': datetime.utcnow().isoformat() |
|
} |
|
user_container.create_item(body=user_data) |
|
print(f"Usuario {role} creado: {username}") |
|
return True |
|
except Exception as e: |
|
print(f"Detailed error in create_user: {str(e)}") |
|
return False |
|
|
|
|
|
def create_admin_user(username, password): |
|
return create_user(username, password, 'Administrador') |
|
|
|
|
|
def create_student_user(username, password): |
|
return create_user(username, password, 'Estudiante') |
|
|
|
|
|
|
|
def get_user(username): |
|
try: |
|
query = f"SELECT * FROM c WHERE c.id = '{username}'" |
|
items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) |
|
user = items[0] if items else None |
|
if user: |
|
print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") |
|
else: |
|
print(f"Usuario no encontrado: {username}") |
|
return user |
|
except Exception as e: |
|
print(f"Error al obtener usuario {username}: {str(e)}") |
|
return None |
|
|
|
|
|
def store_application_request(name, email, institution, role, reason): |
|
global application_requests_container |
|
logger.info("Entering store_application_request function") |
|
try: |
|
logger.info("Checking application_requests_container") |
|
if application_requests_container is None: |
|
logger.error("application_requests_container is not initialized") |
|
return False |
|
|
|
logger.info("Creating application request document") |
|
application_request = { |
|
"id": str(uuid.uuid4()), |
|
"name": name, |
|
"email": email, |
|
"institution": institution, |
|
"role": role, |
|
"reason": reason, |
|
"requestDate": datetime.utcnow().isoformat() |
|
} |
|
|
|
logger.info(f"Attempting to store document: {application_request}") |
|
application_requests_container.create_item(body=application_request) |
|
logger.info(f"Application request stored for email: {email}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error storing application request: {str(e)}") |
|
return False |
|
|
|
|
|
def store_user_feedback(username, name, email, feedback): |
|
global user_feedback_container |
|
logger.info(f"Attempting to store user feedback for user: {username}") |
|
try: |
|
if user_feedback_container is None: |
|
logger.error("user_feedback_container is not initialized") |
|
return False |
|
|
|
feedback_item = { |
|
"id": str(uuid.uuid4()), |
|
"username": username, |
|
"name": name, |
|
"email": email, |
|
"feedback": feedback, |
|
"timestamp": datetime.utcnow().isoformat() |
|
} |
|
|
|
result = user_feedback_container.create_item(body=feedback_item) |
|
logger.info(f"User feedback stored with ID: {result['id']} for user: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error storing user feedback for user {username}: {str(e)}") |
|
return False |
|
|
|
|
|
|
|
|
|
def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure): |
|
if analysis_collection is None: |
|
logger.error("La conexión a MongoDB no está inicializada") |
|
return False |
|
|
|
try: |
|
word_count = {} |
|
for word, color in repeated_words.items(): |
|
category = color |
|
word_count[category] = word_count.get(category, 0) + 1 |
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'text': text, |
|
'word_count': word_count, |
|
'arc_diagrams': arc_diagrams, |
|
'pos_analysis': pos_analysis, |
|
'morphological_analysis': morphological_analysis, |
|
'sentence_structure': sentence_structure |
|
} |
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
|
|
def store_semantic_result(username, text, analysis_result): |
|
if analysis_collection is None: |
|
logger.error("La conexión a MongoDB no está inicializada") |
|
return False |
|
|
|
try: |
|
|
|
buf = io.BytesIO() |
|
analysis_result['relations_graph'].savefig(buf, format='png') |
|
buf.seek(0) |
|
img_str = base64.b64encode(buf.getvalue()).decode('utf-8') |
|
|
|
|
|
key_concepts = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts']] |
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'text': text, |
|
'key_concepts': key_concepts, |
|
'network_diagram': img_str, |
|
'analysis_type': 'semantic' |
|
} |
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
logger.info(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
logger.info(f"Longitud de la imagen guardada: {len(img_str)}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis semántico para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
|
|
|
|
def store_discourse_analysis_result(username, text1, text2, analysis_result): |
|
try: |
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) |
|
|
|
|
|
ax1.imshow(analysis_result['graph1'].canvas.renderer.buffer_rgba()) |
|
ax1.set_title("Documento 1: Relaciones Conceptuales") |
|
ax1.axis('off') |
|
|
|
|
|
ax2.imshow(analysis_result['graph2'].canvas.renderer.buffer_rgba()) |
|
ax2.set_title("Documento 2: Relaciones Conceptuales") |
|
ax2.axis('off') |
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
img_str = base64.b64encode(buf.getvalue()).decode('utf-8') |
|
|
|
|
|
plt.close(fig) |
|
plt.close(analysis_result['graph1']) |
|
plt.close(analysis_result['graph2']) |
|
|
|
|
|
key_concepts1 = [(concept, float(frequency)) for concept, frequency in analysis_result['table1'].values.tolist()] |
|
key_concepts2 = [(concept, float(frequency)) for concept, frequency in analysis_result['table2'].values.tolist()] |
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'text1': text1, |
|
'text2': text2, |
|
'combined_graph': img_str, |
|
'key_concepts1': key_concepts1, |
|
'key_concepts2': key_concepts2, |
|
'analysis_type': 'discourse' |
|
} |
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
logger.info(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis discursivo para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
|
|
def store_chat_history(username, messages): |
|
try: |
|
logger.info(f"Attempting to save chat history for user: {username}") |
|
logger.debug(f"Messages to save: {messages}") |
|
|
|
chat_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'messages': messages |
|
} |
|
result = chat_collection.insert_one(chat_document) |
|
logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}") |
|
logger.debug(f"Chat content: {messages}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error saving chat history for user {username}: {str(e)}") |
|
return False |
|
|
|
|
|
def get_student_data(username): |
|
if analysis_collection is None or chat_collection is None: |
|
logger.error("La conexión a MongoDB no está inicializada") |
|
return None |
|
|
|
formatted_data = { |
|
"username": username, |
|
"entries": [], |
|
"entries_count": 0, |
|
"word_count": {}, |
|
"semantic_analyses": [], |
|
"discourse_analyses": [], |
|
"chat_history": [] |
|
} |
|
|
|
try: |
|
logger.info(f"Buscando datos de análisis para el usuario: {username}") |
|
cursor = analysis_collection.find({"username": username}) |
|
|
|
for entry in cursor: |
|
formatted_entry = { |
|
"timestamp": entry.get("timestamp", datetime.utcnow()), |
|
"text": entry.get("text", ""), |
|
"analysis_type": entry.get("analysis_type", "morphosyntax") |
|
} |
|
|
|
if formatted_entry["analysis_type"] == "morphosyntax": |
|
formatted_entry.update({ |
|
"word_count": entry.get("word_count", {}), |
|
"arc_diagrams": entry.get("arc_diagrams", []) |
|
}) |
|
for category, count in formatted_entry["word_count"].items(): |
|
formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count |
|
|
|
elif formatted_entry["analysis_type"] == "semantic": |
|
formatted_entry["network_diagram"] = entry.get("network_diagram", "") |
|
formatted_data["semantic_analyses"].append(formatted_entry) |
|
|
|
elif formatted_entry["analysis_type"] == "discourse": |
|
formatted_entry.update({ |
|
"text1": entry.get("text1", ""), |
|
"text2": entry.get("text2", ""), |
|
"combined_graph": entry.get("combined_graph", "") |
|
}) |
|
formatted_data["discourse_analyses"].append(formatted_entry) |
|
|
|
formatted_data["entries"].append(formatted_entry) |
|
|
|
formatted_data["entries_count"] = len(formatted_data["entries"]) |
|
formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) |
|
|
|
for entry in formatted_data["entries"]: |
|
entry["timestamp"] = entry["timestamp"].isoformat() |
|
|
|
except Exception as e: |
|
logger.error(f"Error al obtener datos de análisis del estudiante {username}: {str(e)}") |
|
|
|
try: |
|
logger.info(f"Buscando historial de chat para el usuario: {username}") |
|
chat_cursor = chat_collection.find({"username": username}) |
|
for chat in chat_cursor: |
|
formatted_chat = { |
|
"timestamp": chat["timestamp"].isoformat(), |
|
"messages": chat["messages"] |
|
} |
|
formatted_data["chat_history"].append(formatted_chat) |
|
|
|
formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}") |
|
|
|
logger.info(f"Datos formateados para {username}: {formatted_data}") |
|
return formatted_data |