|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import torch |
|
from torch.optim import Adam |
|
from torch.utils.data import DataLoader, Dataset |
|
import json |
|
import tqdm |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") |
|
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") |
|
|
|
class MultilingualChatData(Dataset): |
|
def __init__(self, file_path, tokenizer, max_length=512): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
self.data = json.load(f) |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
item = self.data[idx] |
|
input_text = f"<startofstring> {item['input']} <bot>: {item['output']} <endofstring>" |
|
encoding = self.tokenizer(input_text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors="pt") |
|
return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze() |
|
|
|
class MultilingualChatbot: |
|
def __init__(self): |
|
self.models = { |
|
'en': GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium"), |
|
'es': GPT2LMHeadModel.from_pretrained("DeepESP/gpt2-spanish"), |
|
'fr': GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-small") |
|
} |
|
self.tokenizers = { |
|
'en': GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium"), |
|
'es': GPT2Tokenizer.from_pretrained("DeepESP/gpt2-spanish"), |
|
'fr': GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-small") |
|
} |
|
for tokenizer in self.tokenizers.values(): |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.add_special_tokens({ |
|
"bos_token": "<startofstring>", |
|
"eos_token": "<endofstring>" |
|
}) |
|
tokenizer.add_tokens(["<bot>:"]) |
|
|
|
for model in self.models.values(): |
|
model.resize_token_embeddings(len(self.tokenizers['en'])) |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
for model in self.models.values(): |
|
model.to(self.device) |
|
|
|
def train(self, lang, data_file, epochs=5, batch_size=32, learning_rate=1e-4): |
|
model = self.models[lang] |
|
tokenizer = self.tokenizers[lang] |
|
|
|
chat_data = MultilingualChatData(data_file, tokenizer) |
|
data_loader = DataLoader(chat_data, batch_size=batch_size, shuffle=True) |
|
|
|
optimizer = Adam(model.parameters(), lr=learning_rate) |
|
|
|
model.train() |
|
for epoch in range(epochs): |
|
total_loss = 0 |
|
for batch in tqdm.tqdm(data_loader, desc=f"Epoch {epoch+1}/{epochs}"): |
|
input_ids, attention_mask = [b.to(self.device) for b in batch] |
|
|
|
optimizer.zero_grad() |
|
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
total_loss += loss.item() |
|
|
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(data_loader):.4f}") |
|
|
|
torch.save(model.state_dict(), f"model_state_{lang}.pt") |
|
|
|
def generate_response(self, prompt, src_lang): |
|
model = self.models.get(src_lang, self.models['en']) |
|
tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en']) |
|
|
|
input_text = f"<startofstring> {prompt} <bot>: " |
|
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(self.device) |
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=self.device) |
|
|
|
output = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=1000, |
|
pad_token_id=tokenizer.eos_token_id, |
|
no_repeat_ngram_size=3, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=0.7, |
|
num_return_sequences=1, |
|
length_penalty=1.0, |
|
repetition_penalty=1.2 |
|
) |
|
|
|
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return decoded_output.split("<bot>:")[-1].strip() |
|
|
|
def initialize_chatbot(): |
|
return MultilingualChatbot() |
|
|
|
def get_chatbot_response(chatbot, prompt, src_lang): |
|
return chatbot.generate_response(prompt, src_lang) |
|
|
|
|
|
if __name__ == "__main__": |
|
chatbot = initialize_chatbot() |
|
|
|
|
|
chatbot.train('es', './spanish_chat_data.json', epochs=3) |
|
|
|
|
|
print(get_chatbot_response(chatbot, "Hola, ¿cómo estás?", 'es')) |
|
print(get_chatbot_response(chatbot, "Hello, how are you?", 'en')) |
|
print(get_chatbot_response(chatbot, "Bonjour, comment allez-vous?", 'fr')) |