|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
from collections import Counter, defaultdict |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', |
|
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', |
|
'VERB': 'Verbo', 'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', |
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', |
|
'VERB': 'Verb', 'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', |
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', |
|
'VERB': 'Verbe', 'X': 'Autre', |
|
} |
|
} |
|
|
|
ENTITY_LABELS = { |
|
'es': { |
|
"Personas": "lightblue", |
|
"Lugares": "lightcoral", |
|
"Inventos": "lightgreen", |
|
"Fechas": "lightyellow", |
|
"Conceptos": "lightpink" |
|
}, |
|
'en': { |
|
"People": "lightblue", |
|
"Places": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
}, |
|
'fr': { |
|
"Personnes": "lightblue", |
|
"Lieux": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
} |
|
} |
|
|
|
def identify_key_concepts(doc, top_n=10): |
|
|
|
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ'] and not token.is_stop]) |
|
return word_freq.most_common(top_n) |
|
|
|
def create_concept_graph(doc, key_concepts): |
|
G = nx.Graph() |
|
|
|
|
|
for concept, freq in key_concepts: |
|
G.add_node(concept, weight=freq) |
|
|
|
|
|
for sent in doc.sents: |
|
sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)] |
|
for i, concept1 in enumerate(sent_concepts): |
|
for concept2 in sent_concepts[i+1:]: |
|
if G.has_edge(concept1, concept2): |
|
G[concept1][concept2]['weight'] += 1 |
|
else: |
|
G.add_edge(concept1, concept2, weight=1) |
|
|
|
return G |
|
|
|
def visualize_concept_graph(G, lang): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G, k=0.5, iterations=50) |
|
|
|
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] |
|
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) |
|
|
|
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] |
|
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) |
|
|
|
title = { |
|
'es': "Relaciones entre Conceptos Clave", |
|
'en': "Key Concept Relations", |
|
'fr': "Relations entre Concepts Clés" |
|
} |
|
ax.set_title(title[lang], fontsize=16) |
|
ax.axis('off') |
|
|
|
plt.tight_layout() |
|
return fig |
|
|
|
def perform_semantic_analysis(text, nlp, lang): |
|
doc = nlp(text) |
|
|
|
|
|
key_concepts = identify_key_concepts(doc) |
|
|
|
|
|
concept_graph = create_concept_graph(doc, key_concepts) |
|
relations_graph = visualize_concept_graph(concept_graph, lang) |
|
|
|
return { |
|
'key_concepts': key_concepts, |
|
'relations_graph': relations_graph |
|
} |
|
|
|
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] |