test2 / modules /syntax_analysis.py
AIdeaText's picture
Update modules/syntax_analysis.py
bd04299 verified
raw
history blame
5.89 kB
#syntax_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
# Remove the global nlp model loading
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Adposici贸n',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunci贸n Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjecci贸n',
'NOUN': 'Sustantivo',
'NUM': 'N煤mero',
'PART': 'Part铆cula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunci贸n Subordinante',
'SYM': 'S铆mbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Adposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Adposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'D茅terminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
########################################################################################################################################
def count_pos(doc):
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
#######################################################################################################################################
def create_syntax_graph(doc, lang):
G = nx.DiGraph()
pos_counts = count_pos(doc)
word_nodes = {}
word_colors = {}
for token in doc:
if token.pos_ != 'PUNCT':
lower_text = token.text.lower()
if lower_text not in word_nodes:
node_id = len(word_nodes)
word_nodes[lower_text] = node_id
color = POS_COLORS.get(token.pos_, '#FFFFFF')
word_colors[lower_text] = color
G.add_node(node_id,
label=f"{token.text}\n[{POS_TRANSLATIONS[lang].get(token.pos_, token.pos_)}]",
pos=token.pos_,
size=pos_counts[token.pos_] * 500,
color=color)
if token.dep_ != "ROOT" and token.head.pos_ != 'PUNCT':
head_id = word_nodes.get(token.head.text.lower())
if head_id is not None:
G.add_edge(head_id, word_nodes[lower_text], label=token.dep_)
return G, word_colors
####################################################################################################################################
def visualize_syntax_graph(doc, lang):
G, word_colors = create_syntax_graph(doc, lang)
plt.figure(figsize=(24, 18)) # Increase figure size
pos = nx.spring_layout(G, k=0.9, iterations=50) # Adjust layout parameters
node_colors = [data['color'] for _, data in G.nodes(data=True)]
node_sizes = [data['size'] for _, data in G.nodes(data=True)]
nx.draw(G, pos, with_labels=False, node_color=node_colors, node_size=node_sizes, arrows=True,
arrowsize=20, width=2, edge_color='gray') # Adjust node and edge appearance
nx.draw_networkx_labels(G, pos, {node: data['label'] for node, data in G.nodes(data=True)},
font_size=10, font_weight='bold') # Increase font size and make bold
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
plt.title("Syntactic Analysis" if lang == 'en' else "Analyse Syntaxique" if lang == 'fr' else "An谩lisis Sint谩ctico",
fontsize=20, fontweight='bold') # Increase title font size
plt.axis('off')
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=color, edgecolor='none',
label=f"{POS_TRANSLATIONS[lang][pos]} ({count_pos(doc)[pos]})")
for pos, color in POS_COLORS.items() if pos in set(nx.get_node_attributes(G, 'pos').values())]
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12) # Increase legend font size
return plt
################################################################################################################################
def visualize_syntax(text, nlp, lang):
max_tokens = 5000
doc = nlp(text)
if len(doc) > max_tokens:
doc = nlp(text[:max_tokens])
print(f"Warning: The input text is too long. Only the first {max_tokens} tokens will be visualized.")
return visualize_syntax_graph(doc, lang)
pass