|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
from collections import Counter |
|
|
|
|
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', |
|
'ADP': '#98FB98', |
|
'ADV': '#87CEFA', |
|
'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', |
|
'DET': '#FFB6C1', |
|
'INTJ': '#FF6347', |
|
'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', |
|
'PART': '#D3D3D3', |
|
'PRON': '#FFA500', |
|
'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', |
|
'SYM': '#7B68EE', |
|
'VERB': '#FF69B4', |
|
'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', |
|
'ADP': 'Adposici贸n', |
|
'ADV': 'Adverbio', |
|
'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunci贸n Coordinante', |
|
'DET': 'Determinante', |
|
'INTJ': 'Interjecci贸n', |
|
'NOUN': 'Sustantivo', |
|
'NUM': 'N煤mero', |
|
'PART': 'Part铆cula', |
|
'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', |
|
'SCONJ': 'Conjunci贸n Subordinante', |
|
'SYM': 'S铆mbolo', |
|
'VERB': 'Verbo', |
|
'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', |
|
'ADP': 'Adposition', |
|
'ADV': 'Adverb', |
|
'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', |
|
'DET': 'Determiner', |
|
'INTJ': 'Interjection', |
|
'NOUN': 'Noun', |
|
'NUM': 'Number', |
|
'PART': 'Particle', |
|
'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', |
|
'SCONJ': 'Subordinating Conjunction', |
|
'SYM': 'Symbol', |
|
'VERB': 'Verb', |
|
'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', |
|
'ADP': 'Adposition', |
|
'ADV': 'Adverbe', |
|
'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', |
|
'DET': 'D茅terminant', |
|
'INTJ': 'Interjection', |
|
'NOUN': 'Nom', |
|
'NUM': 'Nombre', |
|
'PART': 'Particule', |
|
'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', |
|
'SCONJ': 'Conjonction de Subordination', |
|
'SYM': 'Symbole', |
|
'VERB': 'Verbe', |
|
'X': 'Autre', |
|
} |
|
} |
|
|
|
def count_pos(doc): |
|
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT') |
|
|
|
def create_syntax_graph(doc, lang): |
|
G = nx.DiGraph() |
|
pos_counts = count_pos(doc) |
|
word_nodes = {} |
|
word_colors = {} |
|
|
|
for token in doc: |
|
if token.pos_ != 'PUNCT': |
|
lower_text = token.text.lower() |
|
if lower_text not in word_nodes: |
|
node_id = len(word_nodes) |
|
word_nodes[lower_text] = node_id |
|
color = POS_COLORS.get(token.pos_, '#FFFFFF') |
|
word_colors[lower_text] = color |
|
G.add_node(node_id, |
|
label=f"{token.text}\n[{POS_TRANSLATIONS[lang].get(token.pos_, token.pos_)}]", |
|
pos=token.pos_, |
|
size=pos_counts[token.pos_] * 500, |
|
color=color) |
|
|
|
if token.dep_ != "ROOT" and token.head.pos_ != 'PUNCT': |
|
head_id = word_nodes.get(token.head.text.lower()) |
|
if head_id is not None: |
|
G.add_edge(head_id, word_nodes[lower_text], label=token.dep_) |
|
|
|
return G, word_colors |
|
|
|
def visualize_syntax_graph(doc, lang): |
|
G, word_colors = create_syntax_graph(doc, lang) |
|
|
|
plt.figure(figsize=(24, 18)) |
|
pos = nx.spring_layout(G, k=0.9, iterations=50) |
|
|
|
node_colors = [data['color'] for _, data in G.nodes(data=True)] |
|
node_sizes = [data['size'] for _, data in G.nodes(data=True)] |
|
|
|
nx.draw(G, pos, with_labels=False, node_color=node_colors, node_size=node_sizes, arrows=True, |
|
arrowsize=20, width=2, edge_color='gray') |
|
|
|
nx.draw_networkx_labels(G, pos, {node: data['label'] for node, data in G.nodes(data=True)}, |
|
font_size=10, font_weight='bold') |
|
|
|
edge_labels = nx.get_edge_attributes(G, 'label') |
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8) |
|
|
|
plt.title("Syntactic Analysis" if lang == 'en' else "Analyse Syntaxique" if lang == 'fr' else "An谩lisis Sint谩ctico", |
|
fontsize=20, fontweight='bold') |
|
plt.axis('off') |
|
|
|
legend_elements = [plt.Rectangle((0,0),1,1, facecolor=color, edgecolor='none', |
|
label=f"{POS_TRANSLATIONS[lang][pos]} ({count_pos(doc)[pos]})") |
|
for pos, color in POS_COLORS.items() if pos in set(nx.get_node_attributes(G, 'pos').values())] |
|
plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12) |
|
|
|
return plt |
|
|
|
def visualize_syntax(text, nlp, lang): |
|
max_tokens = 5000 |
|
doc = nlp(text) |
|
if len(doc) > max_tokens: |
|
doc = nlp(text[:max_tokens]) |
|
print(f"Warning: The input text is too long. Only the first {max_tokens} tokens will be visualized.") |
|
return visualize_syntax_graph(doc, lang) |
|
|
|
def get_repeated_words_colors(doc): |
|
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT') |
|
repeated_words = {word: count for word, count in word_counts.items() if count > 1} |
|
|
|
word_colors = {} |
|
for token in doc: |
|
if token.text.lower() in repeated_words: |
|
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') |
|
|
|
return word_colors |
|
|
|
def highlight_repeated_words(doc, word_colors): |
|
highlighted_text = [] |
|
for token in doc: |
|
if token.text.lower() in word_colors: |
|
color = word_colors[token.text.lower()] |
|
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>') |
|
else: |
|
highlighted_text.append(token.text) |
|
return ' '.join(highlighted_text) |