|
|
|
import logging |
|
import os |
|
from azure.cosmos import CosmosClient |
|
from azure.cosmos.exceptions import CosmosHttpResponseError |
|
from pymongo import MongoClient |
|
import certifi |
|
from datetime import datetime |
|
import io |
|
import base64 |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
cosmos_client = None |
|
user_database = None |
|
user_container = None |
|
|
|
|
|
mongo_client = None |
|
mongo_db = None |
|
analysis_collection = None |
|
|
|
|
|
def initialize_cosmos_sql_connection(): |
|
global cosmos_client, user_database, user_container |
|
try: |
|
cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") |
|
cosmos_key = os.environ.get("COSMOS_KEY") |
|
|
|
if not cosmos_endpoint or not cosmos_key: |
|
raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") |
|
|
|
cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) |
|
user_database = cosmos_client.get_database_client("user_database") |
|
user_container = user_database.get_container_client("users") |
|
|
|
logger.info("Conexión a Cosmos DB SQL API exitosa") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}") |
|
return False |
|
|
|
|
|
def initialize_mongodb_connection(): |
|
global mongo_client, mongo_db, analysis_collection |
|
try: |
|
cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") |
|
if not cosmos_mongodb_connection_string: |
|
logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") |
|
return False |
|
|
|
mongo_client = MongoClient(cosmos_mongodb_connection_string, |
|
tls=True, |
|
tlsCAFile=certifi.where(), |
|
retryWrites=False, |
|
serverSelectionTimeoutMS=5000, |
|
connectTimeoutMS=10000, |
|
socketTimeoutMS=10000) |
|
|
|
mongo_client.admin.command('ping') |
|
|
|
mongo_db = mongo_client['aideatext_db'] |
|
analysis_collection = mongo_db['text_analysis'] |
|
|
|
logger.info("Conexión a Cosmos DB MongoDB API exitosa") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) |
|
return False |
|
|
|
|
|
def create_user(username, password, role): |
|
try: |
|
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') |
|
user_data = { |
|
'id': username, |
|
'password': hashed_password, |
|
'role': role, |
|
'created_at': datetime.utcnow().isoformat() |
|
} |
|
user_container.create_item(body=user_data) |
|
print(f"Usuario {role} creado: {username}") |
|
return True |
|
except Exception as e: |
|
print(f"Error al crear usuario {role}: {str(e)}") |
|
return False |
|
|
|
|
|
def create_admin_user(username, password): |
|
return create_user(username, password, 'Administrador') |
|
|
|
|
|
def create_student_user(username, password): |
|
return create_user(username, password, 'Estudiante') |
|
|
|
|
|
|
|
def get_user(username): |
|
try: |
|
query = f"SELECT * FROM c WHERE c.id = '{username}'" |
|
items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) |
|
user = items[0] if items else None |
|
if user: |
|
print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") |
|
else: |
|
print(f"Usuario no encontrado: {username}") |
|
return user |
|
except Exception as e: |
|
print(f"Error al obtener usuario {username}: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
|
|
def get_student_data(username): |
|
if analysis_collection is None: |
|
logger.error("La conexión a MongoDB no está inicializada") |
|
return None |
|
|
|
try: |
|
logger.info(f"Buscando datos para el usuario: {username}") |
|
|
|
cursor = analysis_collection.find({"username": username}) |
|
|
|
|
|
count = analysis_collection.count_documents({"username": username}) |
|
logger.info(f"Número de documentos encontrados para {username}: {count}") |
|
|
|
if count == 0: |
|
logger.info(f"No se encontraron datos para el usuario {username}") |
|
return None |
|
|
|
|
|
formatted_data = { |
|
"username": username, |
|
"entries": [], |
|
"entries_count": count, |
|
"word_count": {} |
|
} |
|
|
|
for entry in cursor: |
|
formatted_entry = { |
|
"timestamp": entry["timestamp"], |
|
"text": entry["text"], |
|
"word_count": entry.get("word_count", {}), |
|
"arc_diagrams": entry.get("arc_diagrams", []), |
|
"network_diagram": entry.get("network_diagram", "") |
|
} |
|
formatted_data["entries"].append(formatted_entry) |
|
|
|
|
|
for category, count in formatted_entry["word_count"].items(): |
|
if category in formatted_data["word_count"]: |
|
formatted_data["word_count"][category] += count |
|
else: |
|
formatted_data["word_count"][category] = count |
|
|
|
|
|
formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) |
|
|
|
|
|
for entry in formatted_data["entries"]: |
|
entry["timestamp"] = entry["timestamp"].isoformat() |
|
|
|
logger.info(f"Datos formateados para {username}: {formatted_data}") |
|
return formatted_data |
|
|
|
except Exception as e: |
|
logger.error(f"Error al obtener datos del estudiante {username}: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
def store_morphosyntax_result(username, text, repeated_words, arc_diagrams): |
|
if analysis_collection is None: |
|
logger.error("La conexión a MongoDB no está inicializada") |
|
return False |
|
|
|
try: |
|
word_count = {} |
|
for word, color in repeated_words.items(): |
|
category = color |
|
word_count[category] = word_count.get(category, 0) + 1 |
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'text': text, |
|
'word_count': word_count, |
|
'arc_diagrams': arc_diagrams, |
|
} |
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
|
|
logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
|
|
def store_semantic_result(username, text, network_diagram): |
|
try: |
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'text': text, |
|
'network_diagram': network_diagram, |
|
'analysis_type': 'semantic' |
|
} |
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
|
|
logger.info(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error al guardar el análisis semántico para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
|
|
def store_discourse_semantic_result(username, text, discourse_analysis): |
|
|
|
pass |
|
|
|
|
|
def store_chat_history(username, messages): |
|
try: |
|
chat_document = { |
|
'username': username, |
|
'timestamp': datetime.utcnow(), |
|
'messages': messages |
|
} |
|
result = chat_collection.insert_one(chat_document) |
|
logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error saving chat history for user {username}: {str(e)}") |
|
return False |