Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
from typing import List, Dict
|
5 |
import time
|
6 |
|
7 |
class LlamaDemo:
|
8 |
def __init__(self):
|
9 |
-
|
|
|
10 |
# Initialize in lazy loading fashion
|
11 |
self._model = None
|
12 |
self._tokenizer = None
|
@@ -17,24 +18,31 @@ class LlamaDemo:
|
|
17 |
self._model = AutoModelForCausalLM.from_pretrained(
|
18 |
self.model_name,
|
19 |
torch_dtype=torch.float16,
|
20 |
-
device_map="auto"
|
|
|
21 |
)
|
22 |
return self._model
|
23 |
|
24 |
@property
|
25 |
def tokenizer(self):
|
26 |
if self._tokenizer is None:
|
27 |
-
self._tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
28 |
return self._tokenizer
|
29 |
|
30 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
# Generate response
|
34 |
with torch.no_grad():
|
35 |
outputs = self.model.generate(
|
36 |
**inputs,
|
37 |
-
|
38 |
num_return_sequences=1,
|
39 |
temperature=0.7,
|
40 |
do_sample=True,
|
@@ -42,20 +50,23 @@ class LlamaDemo:
|
|
42 |
)
|
43 |
|
44 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
-
|
|
|
|
|
46 |
|
47 |
def main():
|
48 |
st.set_page_config(
|
49 |
-
page_title="Llama
|
50 |
page_icon="🦙",
|
51 |
layout="wide"
|
52 |
)
|
53 |
|
54 |
-
st.title("🦙 Llama
|
55 |
|
56 |
# Initialize session state
|
57 |
if 'llama' not in st.session_state:
|
58 |
-
st.
|
|
|
59 |
|
60 |
if 'chat_history' not in st.session_state:
|
61 |
st.session_state.chat_history = []
|
@@ -85,7 +96,7 @@ def main():
|
|
85 |
with st.chat_message("assistant"):
|
86 |
message_placeholder = st.empty()
|
87 |
|
88 |
-
with st.spinner("
|
89 |
response = st.session_state.llama.generate_response(prompt)
|
90 |
message_placeholder.write(response)
|
91 |
|
@@ -95,11 +106,20 @@ def main():
|
|
95 |
"content": response
|
96 |
})
|
97 |
|
98 |
-
# Sidebar with settings
|
99 |
with st.sidebar:
|
100 |
st.header("Settings")
|
101 |
max_length = st.slider("Maximum response length", 64, 1024, 512)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
if st.button("Clear Chat History"):
|
104 |
st.session_state.chat_history = []
|
105 |
st.experimental_rerun()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
from typing import List, Dict
|
5 |
import time
|
6 |
|
7 |
class LlamaDemo:
|
8 |
def __init__(self):
|
9 |
+
# Using TinyLlama, which is open source and doesn't require authentication
|
10 |
+
self.model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
11 |
# Initialize in lazy loading fashion
|
12 |
self._model = None
|
13 |
self._tokenizer = None
|
|
|
18 |
self._model = AutoModelForCausalLM.from_pretrained(
|
19 |
self.model_name,
|
20 |
torch_dtype=torch.float16,
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True
|
23 |
)
|
24 |
return self._model
|
25 |
|
26 |
@property
|
27 |
def tokenizer(self):
|
28 |
if self._tokenizer is None:
|
29 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
self.model_name,
|
31 |
+
trust_remote_code=True
|
32 |
+
)
|
33 |
return self._tokenizer
|
34 |
|
35 |
def generate_response(self, prompt: str, max_length: int = 512) -> str:
|
36 |
+
# Format the prompt according to TinyLlama's chat template
|
37 |
+
chat_prompt = f"<|system|>You are a helpful AI assistant.</s><|user|>{prompt}</s><|assistant|>"
|
38 |
+
|
39 |
+
inputs = self.tokenizer(chat_prompt, return_tensors="pt").to(self.model.device)
|
40 |
|
41 |
# Generate response
|
42 |
with torch.no_grad():
|
43 |
outputs = self.model.generate(
|
44 |
**inputs,
|
45 |
+
max_new_tokens=max_length,
|
46 |
num_return_sequences=1,
|
47 |
temperature=0.7,
|
48 |
do_sample=True,
|
|
|
50 |
)
|
51 |
|
52 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
# Remove the prompt from the response
|
54 |
+
response = response.split("<|assistant|>")[-1].strip()
|
55 |
+
return response
|
56 |
|
57 |
def main():
|
58 |
st.set_page_config(
|
59 |
+
page_title="Open Source Llama Demo",
|
60 |
page_icon="🦙",
|
61 |
layout="wide"
|
62 |
)
|
63 |
|
64 |
+
st.title("🦙 Open Source Llama Demo")
|
65 |
|
66 |
# Initialize session state
|
67 |
if 'llama' not in st.session_state:
|
68 |
+
with st.spinner("Loading model... This might take a few minutes..."):
|
69 |
+
st.session_state.llama = LlamaDemo()
|
70 |
|
71 |
if 'chat_history' not in st.session_state:
|
72 |
st.session_state.chat_history = []
|
|
|
96 |
with st.chat_message("assistant"):
|
97 |
message_placeholder = st.empty()
|
98 |
|
99 |
+
with st.spinner("Thinking..."):
|
100 |
response = st.session_state.llama.generate_response(prompt)
|
101 |
message_placeholder.write(response)
|
102 |
|
|
|
106 |
"content": response
|
107 |
})
|
108 |
|
109 |
+
# Sidebar with settings and info
|
110 |
with st.sidebar:
|
111 |
st.header("Settings")
|
112 |
max_length = st.slider("Maximum response length", 64, 1024, 512)
|
113 |
|
114 |
+
st.markdown("---")
|
115 |
+
st.markdown("""
|
116 |
+
### About
|
117 |
+
This demo uses TinyLlama, an open source language model that's smaller but
|
118 |
+
still capable. It's perfect for demonstrations and testing.
|
119 |
+
|
120 |
+
The model is loaded locally and doesn't require any authentication or API keys.
|
121 |
+
""")
|
122 |
+
|
123 |
if st.button("Clear Chat History"):
|
124 |
st.session_state.chat_history = []
|
125 |
st.experimental_rerun()
|