Spaces:
Sleeping
Sleeping
Commit
·
bc46226
1
Parent(s):
6930d8f
Revert back to original
Browse files- app.py +62 -136
- templates/index.html +4 -4
- templates/plot.html +4 -4
app.py
CHANGED
|
@@ -7,43 +7,31 @@ import os
|
|
| 7 |
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
| 10 |
-
#
|
| 11 |
data_cache = {
|
| 12 |
-
"df1": None,
|
| 13 |
-
"df2_temp": None, # Test 1 Data
|
| 14 |
-
"df3_temp": None, # Test 2 Data
|
| 15 |
"limits": {},
|
| 16 |
"cols": [],
|
| 17 |
"golden_loaded": False,
|
| 18 |
-
"test1_loaded": False,
|
| 19 |
-
"test2_loaded": False,
|
| 20 |
"comparison_file": None
|
| 21 |
}
|
| 22 |
-
# ----------------------------------------------
|
| 23 |
|
| 24 |
|
| 25 |
def process_golden_file(golden_file):
|
| 26 |
"""Load Golden data and extract limits."""
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
limits_df1 = pd.read_excel(xls, nrows=4)
|
| 30 |
-
df1 = pd.read_excel(xls) # Read the entire sheet again for data
|
| 31 |
-
|
| 32 |
df1 = df1.drop([0, 1, 2, 3])
|
| 33 |
df1 = df1.apply(pd.to_numeric, errors="coerce")
|
| 34 |
|
| 35 |
limits_df1 = limits_df1.drop([0])
|
| 36 |
ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Drop ignore columns from limits df to only get limits for relevant parameters
|
| 41 |
-
limits_df1_filtered = limits_df1.drop(columns=ignore_cols, errors='ignore')
|
| 42 |
|
| 43 |
limits = {
|
| 44 |
-
col: {"LL":
|
| 45 |
-
for col in
|
| 46 |
-
if pd.notna(limits_df1_filtered.iloc[0][col]) or pd.notna(limits_df1_filtered.iloc[1][col])
|
| 47 |
}
|
| 48 |
|
| 49 |
data_cache.update({
|
|
@@ -52,100 +40,68 @@ def process_golden_file(golden_file):
|
|
| 52 |
"cols": cols_to_plot,
|
| 53 |
"golden_loaded": True
|
| 54 |
})
|
| 55 |
-
return "Golden data loaded successfully!"
|
| 56 |
|
| 57 |
|
| 58 |
def process_test_file(test_file):
|
| 59 |
"""Load Test data."""
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
return
|
| 64 |
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"""Generate comparison Excel (mean, std, min, max for Golden, Test 1, and Test 2)."""
|
| 69 |
df1 = data_cache["df1"]
|
| 70 |
-
df2 = data_cache["df2_temp"]
|
| 71 |
-
df3 = data_cache["df3_temp"]
|
| 72 |
-
|
| 73 |
ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"]
|
| 74 |
-
#
|
| 75 |
-
common_cols =
|
|
|
|
|
|
|
| 76 |
|
| 77 |
summary = []
|
| 78 |
for col in common_cols:
|
| 79 |
-
g_mean,
|
| 80 |
-
g_std,
|
| 81 |
-
g_min,
|
| 82 |
-
g_max,
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
diff2 = t2_mean - g_mean if pd.notna(t2_mean) and pd.notna(g_mean) else np.nan
|
| 87 |
-
|
| 88 |
-
summary.append([
|
| 89 |
-
col, g_mean, t1_mean, t2_mean, diff1, diff2,
|
| 90 |
-
g_std, t1_std, t2_std,
|
| 91 |
-
g_min, t1_min, t2_min,
|
| 92 |
-
g_max, t1_max, t2_max
|
| 93 |
-
])
|
| 94 |
|
| 95 |
comp_df = pd.DataFrame(summary, columns=[
|
| 96 |
-
"Parameter", "Golden_Mean", "
|
| 97 |
-
"Golden_Std", "
|
| 98 |
-
"Golden_Min", "Test1_Min", "Test2_Min",
|
| 99 |
-
"Golden_Max", "Test1_Max", "Test2_Max"
|
| 100 |
])
|
| 101 |
|
| 102 |
path = "comparison_result.xlsx"
|
| 103 |
comp_df.to_excel(path, index=False)
|
| 104 |
data_cache["comparison_file"] = path
|
| 105 |
-
# -------------------------------------------------------------
|
| 106 |
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
df1, df2, df3 = data_cache["df1"], data_cache.get("df2_temp"), data_cache.get("df3_temp")
|
| 112 |
-
limits = data_cache["limits"]
|
| 113 |
|
| 114 |
-
plt.figure(figsize=(
|
| 115 |
-
|
| 116 |
-
# Golden Plot
|
| 117 |
x1 = np.arange(1, len(df1[col]) + 1)
|
| 118 |
-
plt.plot(x1, df1[col], 'o-', label="Golden", color='blue'
|
| 119 |
|
| 120 |
-
|
| 121 |
-
if df2 is not None and col in df2.columns:
|
| 122 |
x2 = np.arange(1, len(df2[col]) + 1)
|
| 123 |
-
plt.plot(x2, df2[col], 's--', label="Test
|
| 124 |
|
| 125 |
-
# Test 2 Plot
|
| 126 |
-
if df3 is not None and col in df3.columns:
|
| 127 |
-
x3 = np.arange(1, len(df3[col]) + 1)
|
| 128 |
-
plt.plot(x3, df3[col], 'x:', label="Test 2", color='purple', alpha=0.8)
|
| 129 |
-
|
| 130 |
-
# Limits Plot
|
| 131 |
if col in limits:
|
| 132 |
-
ll, ul = limits[col]
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
if pd.notna(ul):
|
| 136 |
-
plt.axhline(ul, color='orange', linestyle='--', label='UL', linewidth=1)
|
| 137 |
|
| 138 |
-
plt.title(f"
|
| 139 |
plt.xlabel("Part # (sequence)")
|
| 140 |
plt.ylabel("Value")
|
| 141 |
-
plt.legend(fontsize='small'
|
| 142 |
-
plt.grid(True, linestyle='--', alpha=0.
|
| 143 |
-
|
| 144 |
-
# Set x-ticks based on the largest dataset (assuming Golden is the reference)
|
| 145 |
-
max_len = len(df1[col])
|
| 146 |
-
if max_len > 1:
|
| 147 |
-
plt.xticks(np.arange(1, max_len + 1, max(1, max_len // 10))) # Show max 10 ticks
|
| 148 |
-
|
| 149 |
plt.tight_layout()
|
| 150 |
|
| 151 |
buf = io.BytesIO()
|
|
@@ -153,67 +109,49 @@ def generate_plot(col):
|
|
| 153 |
buf.seek(0)
|
| 154 |
plt.close()
|
| 155 |
return buf
|
| 156 |
-
# -------------------------------------------------------------
|
| 157 |
|
| 158 |
|
| 159 |
@app.route("/", methods=["GET", "POST"])
|
| 160 |
def index():
|
| 161 |
if request.method == "POST":
|
| 162 |
-
|
| 163 |
-
# 1. Upload Golden file
|
| 164 |
if not data_cache["golden_loaded"]:
|
| 165 |
golden_file = request.files.get("golden_file")
|
| 166 |
if not golden_file:
|
| 167 |
-
return render_template("index.html", error="Please upload
|
| 168 |
try:
|
| 169 |
process_golden_file(golden_file)
|
| 170 |
return redirect(url_for("index"))
|
|
|
|
| 171 |
except Exception as e:
|
| 172 |
return render_template("index.html", error=f"Error loading Golden file: {e}")
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
if not
|
| 178 |
-
return render_template("index.html", error="Please upload
|
| 179 |
try:
|
| 180 |
-
df2 = process_test_file(
|
| 181 |
data_cache["df2_temp"] = df2
|
| 182 |
-
|
| 183 |
-
return redirect(url_for("index"))
|
| 184 |
-
except Exception as e:
|
| 185 |
-
return render_template("index.html", error=f"Error processing Test 1 file: {e}", **data_cache)
|
| 186 |
-
|
| 187 |
-
# 3. Upload Test 2 file
|
| 188 |
-
elif not data_cache["test2_loaded"]:
|
| 189 |
-
test2_file = request.files.get("test2_file")
|
| 190 |
-
if not test2_file:
|
| 191 |
-
return render_template("index.html", error="Please upload the second Test file (Test 2).", **data_cache)
|
| 192 |
-
try:
|
| 193 |
-
df3 = process_test_file(test2_file)
|
| 194 |
-
data_cache["df3_temp"] = df3
|
| 195 |
-
data_cache["test2_loaded"] = True
|
| 196 |
-
|
| 197 |
-
# Generate comparison and move to plot view after all files are loaded
|
| 198 |
-
generate_comparison_excel()
|
| 199 |
-
|
| 200 |
return render_template(
|
| 201 |
"plot.html",
|
| 202 |
cols=data_cache["cols"],
|
| 203 |
file_ready=True
|
| 204 |
)
|
| 205 |
except Exception as e:
|
| 206 |
-
return render_template("index.html", error=f"Error processing Test
|
| 207 |
|
| 208 |
-
return render_template("index.html",
|
| 209 |
|
| 210 |
|
| 211 |
@app.route("/plot_image/<col>")
|
| 212 |
def plot_image(col):
|
| 213 |
-
|
| 214 |
-
if
|
| 215 |
-
return "No
|
| 216 |
-
buf = generate_plot(col)
|
| 217 |
return send_file(buf, mimetype="image/png")
|
| 218 |
|
| 219 |
|
|
@@ -222,28 +160,16 @@ def download_comparison():
|
|
| 222 |
"""Download comparison Excel file."""
|
| 223 |
path = data_cache.get("comparison_file")
|
| 224 |
if path and os.path.exists(path):
|
| 225 |
-
return send_file(path, as_attachment=True
|
| 226 |
-
return "No comparison file available.
|
| 227 |
|
| 228 |
|
| 229 |
@app.route("/reset_golden")
|
| 230 |
def reset_golden():
|
| 231 |
-
"""Reset
|
| 232 |
-
|
| 233 |
-
if data_cache.get("comparison_file") and os.path.exists(data_cache["comparison_file"]):
|
| 234 |
-
os.remove(data_cache["comparison_file"])
|
| 235 |
-
|
| 236 |
-
data_cache = {
|
| 237 |
-
"df1": None, "df2_temp": None, "df3_temp": None,
|
| 238 |
-
"limits": {}, "cols": [],
|
| 239 |
-
"golden_loaded": False, "test1_loaded": False, "test2_loaded": False,
|
| 240 |
-
"comparison_file": None
|
| 241 |
-
}
|
| 242 |
return redirect(url_for("index"))
|
| 243 |
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
-
|
| 247 |
-
# if not os.path.exists("temp"):
|
| 248 |
-
# os.makedirs("temp")
|
| 249 |
-
app.run(host="0.0.0.0", port=7860, debug=True)
|
|
|
|
| 7 |
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
| 10 |
+
# Cache
|
| 11 |
data_cache = {
|
| 12 |
+
"df1": None,
|
|
|
|
|
|
|
| 13 |
"limits": {},
|
| 14 |
"cols": [],
|
| 15 |
"golden_loaded": False,
|
|
|
|
|
|
|
| 16 |
"comparison_file": None
|
| 17 |
}
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def process_golden_file(golden_file):
|
| 21 |
"""Load Golden data and extract limits."""
|
| 22 |
+
limits_df1 = pd.read_excel(golden_file, nrows=4)
|
| 23 |
+
df1 = pd.read_excel(golden_file)
|
|
|
|
|
|
|
|
|
|
| 24 |
df1 = df1.drop([0, 1, 2, 3])
|
| 25 |
df1 = df1.apply(pd.to_numeric, errors="coerce")
|
| 26 |
|
| 27 |
limits_df1 = limits_df1.drop([0])
|
| 28 |
ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"]
|
| 29 |
+
cols_to_plot = [col for col in limits_df1.columns if "_" in col and col not in ignore_cols]
|
| 30 |
+
limits_df1 = limits_df1.drop(columns=ignore_cols)
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
limits = {
|
| 33 |
+
col: {"LL": limits_df1.iloc[0][col], "UL": limits_df1.iloc[1][col]}
|
| 34 |
+
for col in limits_df1.columns
|
|
|
|
| 35 |
}
|
| 36 |
|
| 37 |
data_cache.update({
|
|
|
|
| 40 |
"cols": cols_to_plot,
|
| 41 |
"golden_loaded": True
|
| 42 |
})
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
def process_test_file(test_file):
|
| 46 |
"""Load Test data."""
|
| 47 |
+
df2 = pd.read_excel(test_file)
|
| 48 |
+
df2 = df2.drop([0, 1, 2, 3])
|
| 49 |
+
df2 = df2.apply(pd.to_numeric, errors="coerce")
|
| 50 |
+
return df2
|
| 51 |
|
| 52 |
|
| 53 |
+
def generate_comparison_excel(df2):
|
| 54 |
+
"""Generate comparison Excel (mean, std, min, max for both)."""
|
|
|
|
| 55 |
df1 = data_cache["df1"]
|
|
|
|
|
|
|
|
|
|
| 56 |
ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"]
|
| 57 |
+
# cols_to_plot = [col for col in limits_df1.columns if "_" in col and col not in ignore_cols]
|
| 58 |
+
# common_cols = [ignore_cols = ["SITE_NUM", "PART_ID", "PASSFG", "SOFT_BIN", "T_TIME", "TEST_NUM"]
|
| 59 |
+
common_cols = [col for col in df1.columns if "_" in col and col not in ignore_cols]
|
| 60 |
+
# common_cols = [c for c in df1.columns if c in df2.columns]
|
| 61 |
|
| 62 |
summary = []
|
| 63 |
for col in common_cols:
|
| 64 |
+
g_mean, t_mean = df1[col].mean(), df2[col].mean()
|
| 65 |
+
g_std, t_std = df1[col].std(), df2[col].std()
|
| 66 |
+
g_min, t_min = df1[col].min(), df2[col].min()
|
| 67 |
+
g_max, t_max = df1[col].max(), df2[col].max()
|
| 68 |
+
|
| 69 |
+
diff = t_mean - g_mean if pd.notna(t_mean) and pd.notna(g_mean) else np.nan
|
| 70 |
+
summary.append([col, g_mean, t_mean, diff, g_std, t_std, g_min, t_min, g_max, t_max])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
comp_df = pd.DataFrame(summary, columns=[
|
| 73 |
+
"Parameter", "Golden_Mean", "Test_Mean", "Mean_Diff",
|
| 74 |
+
"Golden_Std", "Test_Std", "Golden_Min", "Test_Min", "Golden_Max", "Test_Max"
|
|
|
|
|
|
|
| 75 |
])
|
| 76 |
|
| 77 |
path = "comparison_result.xlsx"
|
| 78 |
comp_df.to_excel(path, index=False)
|
| 79 |
data_cache["comparison_file"] = path
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
+
def generate_plot(df2, col):
|
| 83 |
+
"""Generate and return a plot comparing Golden vs Test."""
|
| 84 |
+
df1, limits = data_cache["df1"], data_cache["limits"]
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
plt.figure(figsize=(6, 4))
|
|
|
|
|
|
|
| 87 |
x1 = np.arange(1, len(df1[col]) + 1)
|
| 88 |
+
plt.plot(x1, df1[col], 'o-', label="Golden", color='blue')
|
| 89 |
|
| 90 |
+
if col in df2.columns:
|
|
|
|
| 91 |
x2 = np.arange(1, len(df2[col]) + 1)
|
| 92 |
+
plt.plot(x2, df2[col], 's--', label="Test", color='red')
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
if col in limits:
|
| 95 |
+
ll, ul = limits[col]["LL"], limits[col]["UL"]
|
| 96 |
+
plt.axhline(ll, color='green', linestyle='--', label='LL')
|
| 97 |
+
plt.axhline(ul, color='orange', linestyle='--', label='UL')
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
plt.title(f"{col}")
|
| 100 |
plt.xlabel("Part # (sequence)")
|
| 101 |
plt.ylabel("Value")
|
| 102 |
+
plt.legend(fontsize='small')
|
| 103 |
+
plt.grid(True, linestyle='--', alpha=0.7)
|
| 104 |
+
plt.xticks(np.arange(1, len(df1[col]) + 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
plt.tight_layout()
|
| 106 |
|
| 107 |
buf = io.BytesIO()
|
|
|
|
| 109 |
buf.seek(0)
|
| 110 |
plt.close()
|
| 111 |
return buf
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
@app.route("/", methods=["GET", "POST"])
|
| 115 |
def index():
|
| 116 |
if request.method == "POST":
|
| 117 |
+
# Upload Golden first
|
|
|
|
| 118 |
if not data_cache["golden_loaded"]:
|
| 119 |
golden_file = request.files.get("golden_file")
|
| 120 |
if not golden_file:
|
| 121 |
+
return render_template("index.html", error="Please upload Golden file.")
|
| 122 |
try:
|
| 123 |
process_golden_file(golden_file)
|
| 124 |
return redirect(url_for("index"))
|
| 125 |
+
# return render_template("index.html", message="Golden data loaded successfully!")
|
| 126 |
except Exception as e:
|
| 127 |
return render_template("index.html", error=f"Error loading Golden file: {e}")
|
| 128 |
|
| 129 |
+
# Upload Test data next
|
| 130 |
+
else:
|
| 131 |
+
test_file = request.files.get("test_file")
|
| 132 |
+
if not test_file:
|
| 133 |
+
return render_template("index.html", error="Please upload Test data.")
|
| 134 |
try:
|
| 135 |
+
df2 = process_test_file(test_file)
|
| 136 |
data_cache["df2_temp"] = df2
|
| 137 |
+
generate_comparison_excel(df2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
return render_template(
|
| 139 |
"plot.html",
|
| 140 |
cols=data_cache["cols"],
|
| 141 |
file_ready=True
|
| 142 |
)
|
| 143 |
except Exception as e:
|
| 144 |
+
return render_template("index.html", error=f"Error processing Test file: {e}")
|
| 145 |
|
| 146 |
+
return render_template("index.html", golden_loaded=data_cache["golden_loaded"])
|
| 147 |
|
| 148 |
|
| 149 |
@app.route("/plot_image/<col>")
|
| 150 |
def plot_image(col):
|
| 151 |
+
df2 = data_cache.get("df2_temp")
|
| 152 |
+
if df2 is None:
|
| 153 |
+
return "No Test data loaded."
|
| 154 |
+
buf = generate_plot(df2, col)
|
| 155 |
return send_file(buf, mimetype="image/png")
|
| 156 |
|
| 157 |
|
|
|
|
| 160 |
"""Download comparison Excel file."""
|
| 161 |
path = data_cache.get("comparison_file")
|
| 162 |
if path and os.path.exists(path):
|
| 163 |
+
return send_file(path, as_attachment=True)
|
| 164 |
+
return "No comparison file available."
|
| 165 |
|
| 166 |
|
| 167 |
@app.route("/reset_golden")
|
| 168 |
def reset_golden():
|
| 169 |
+
"""Reset golden data."""
|
| 170 |
+
data_cache.update({"df1": None, "limits": {}, "cols": [], "golden_loaded": False})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
return redirect(url_for("index"))
|
| 172 |
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
+
app.run(host="0.0.0.0", port=7860, debug=True)
|
|
|
|
|
|
|
|
|
templates/index.html
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
<html lang="en">
|
| 3 |
<head>
|
| 4 |
<meta charset="UTF-8">
|
|
@@ -139,12 +139,12 @@
|
|
| 139 |
<footer>© 2025 IPM Data Visualizer</footer>
|
| 140 |
|
| 141 |
</body>
|
| 142 |
-
</html>
|
| 143 |
|
| 144 |
|
| 145 |
<!-- New Code -->
|
| 146 |
|
| 147 |
-
<!DOCTYPE html>
|
| 148 |
<html lang="en">
|
| 149 |
<head>
|
| 150 |
<meta charset="UTF-8">
|
|
@@ -192,4 +192,4 @@
|
|
| 192 |
{% endif %}
|
| 193 |
|
| 194 |
</body>
|
| 195 |
-
</html>
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
<html lang="en">
|
| 3 |
<head>
|
| 4 |
<meta charset="UTF-8">
|
|
|
|
| 139 |
<footer>© 2025 IPM Data Visualizer</footer>
|
| 140 |
|
| 141 |
</body>
|
| 142 |
+
</html>
|
| 143 |
|
| 144 |
|
| 145 |
<!-- New Code -->
|
| 146 |
|
| 147 |
+
<!-- <!DOCTYPE html>
|
| 148 |
<html lang="en">
|
| 149 |
<head>
|
| 150 |
<meta charset="UTF-8">
|
|
|
|
| 192 |
{% endif %}
|
| 193 |
|
| 194 |
</body>
|
| 195 |
+
</html> -->
|
templates/plot.html
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
<html>
|
| 3 |
<head>
|
| 4 |
<title>IPM Comparison</title>
|
|
@@ -84,12 +84,12 @@
|
|
| 84 |
</form>
|
| 85 |
|
| 86 |
</body>
|
| 87 |
-
</html>
|
| 88 |
|
| 89 |
|
| 90 |
<!-- New Code -->
|
| 91 |
|
| 92 |
-
<!DOCTYPE html>
|
| 93 |
<html lang="en">
|
| 94 |
<head>
|
| 95 |
<meta charset="UTF-8">
|
|
@@ -136,4 +136,4 @@
|
|
| 136 |
{% endif %}
|
| 137 |
|
| 138 |
</body>
|
| 139 |
-
</html>
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
<html>
|
| 3 |
<head>
|
| 4 |
<title>IPM Comparison</title>
|
|
|
|
| 84 |
</form>
|
| 85 |
|
| 86 |
</body>
|
| 87 |
+
</html>
|
| 88 |
|
| 89 |
|
| 90 |
<!-- New Code -->
|
| 91 |
|
| 92 |
+
<!-- <!DOCTYPE html>
|
| 93 |
<html lang="en">
|
| 94 |
<head>
|
| 95 |
<meta charset="UTF-8">
|
|
|
|
| 136 |
{% endif %}
|
| 137 |
|
| 138 |
</body>
|
| 139 |
+
</html> -->
|