Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import io | |
| from flask import Flask, request, jsonify, send_file | |
| from flask_cors import CORS | |
| from tensorflow.keras.models import load_model | |
| from PIL import Image | |
| # Load model | |
| model = load_model("unet_model.h5", compile = False) | |
| app = Flask(__name__) | |
| CORS(app) # allow frontend to fetch | |
| # Preprocess function | |
| def preprocess_image(image, target_size = (192, 176)): | |
| image = image.resize((target_size[1], target_size[0])) # width, height | |
| image = np.array(image) / 255.0 | |
| if image.ndim == 2: | |
| image = np.expand_dims(image, axis = -1) | |
| return np.expand_dims(image, axis = 0) | |
| def predict(): | |
| if "file" not in request.files: | |
| return jsonify({"error": "No file uploaded"}), 400 | |
| file = request.files["file"] | |
| img = Image.open(file.stream).convert("L") # grayscale | |
| input_data = preprocess_image(img) | |
| pred = model.predict(input_data)[0] | |
| if pred.ndim == 3 and pred.shape[-1] == 1: | |
| pred = np.squeeze(pred, axis = -1) | |
| pred_img = (pred * 255).astype(np.uint8) | |
| pred_img = Image.fromarray(pred_img) | |
| buf = io.BytesIO() | |
| pred_img.save(buf, format="PNG") | |
| buf.seek(0) | |
| return send_file(buf, mimetype = "image/png") | |
| if __name__ == "__main__": | |
| app.run(host = "127.0.0.1", port = 5000, debug = True) |