Update model.py
Browse files
model.py
CHANGED
|
@@ -1,32 +1,70 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
from PIL import Image
|
| 4 |
-
import
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
"saved_model",
|
| 9 |
-
"Inception_V3_Animals_Classification.h5"
|
| 10 |
-
)
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
img = img.convert("RGB")
|
| 18 |
-
img = img.resize(target_size)
|
| 19 |
-
img = np.array(img).astype("float32") / 255.0
|
| 20 |
-
img = np.expand_dims(img, axis=0)
|
| 21 |
-
return img
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
+
from model import predict
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
# Load dataset (NO streaming → allows len() and indexing)
|
| 8 |
+
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train")
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def classify_image(img: Image.Image):
|
| 11 |
|
| 12 |
+
# Handle empty input safely
|
| 13 |
+
if img is None:
|
| 14 |
+
return "No image uploaded", 0, {}
|
| 15 |
|
| 16 |
+
label, confidence, probs = predict(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
return (
|
| 19 |
+
label,
|
| 20 |
+
round(confidence, 3),
|
| 21 |
+
{k: round(v, 3) for k, v in probs.items()}
|
| 22 |
+
)
|
| 23 |
|
| 24 |
+
# Pick a random example
|
| 25 |
+
def random_example():
|
| 26 |
|
| 27 |
+
idx = random.randint(0, len(dataset) - 1)
|
| 28 |
+
item = dataset[idx]
|
| 29 |
|
| 30 |
+
img = item["image"].convert("RGB")
|
| 31 |
+
label = item["label"]
|
| 32 |
+
label_str = dataset.features["label"].int2str(label)
|
| 33 |
+
|
| 34 |
+
return img, label_str
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
demo = gr.Blocks()
|
| 38 |
+
|
| 39 |
+
with demo:
|
| 40 |
+
gr.Markdown("## Animal Image Classifier with Random Dataset Samples")
|
| 41 |
+
|
| 42 |
+
with gr.Row():
|
| 43 |
+
input_img = gr.Image(type="pil", label="Upload an image")
|
| 44 |
+
rand_img = gr.Button("Random Dataset Image")
|
| 45 |
+
|
| 46 |
+
with gr.Row():
|
| 47 |
+
pred_btn = gr.Button("Predict")
|
| 48 |
+
|
| 49 |
+
output_label = gr.Label(label="Predicted Class")
|
| 50 |
+
output_conf = gr.Number(label="Confidence")
|
| 51 |
+
output_probs = gr.JSON(label="All Probabilities")
|
| 52 |
+
|
| 53 |
+
# Display random dataset sample
|
| 54 |
+
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 55 |
+
rand_label = gr.Textbox(label="Sample Label")
|
| 56 |
+
|
| 57 |
+
# Actions
|
| 58 |
+
pred_btn.click(
|
| 59 |
+
classify_image,
|
| 60 |
+
inputs=input_img,
|
| 61 |
+
outputs=[output_label, output_conf, output_probs]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
rand_img.click(
|
| 65 |
+
random_example,
|
| 66 |
+
outputs=[rand_display, rand_label]
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
demo.launch()
|