Spaces:
Running
Running
AIModels24
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,23 @@
|
|
1 |
-
import torch
|
2 |
import streamlit as st
|
3 |
-
from peft import PeftModel
|
4 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
-
|
7 |
-
# def load_model_and_tokenizer():
|
8 |
-
# model_name = "AIModels24/Indian_Constitution" # Replace with your model name
|
9 |
-
|
10 |
-
# # Define quantization configuration for 4-bit quantization
|
11 |
-
# # quant_config = BitsAndBytesConfig(load_in_4bit=True) # 4-bit quantization
|
12 |
-
|
13 |
-
# # Load the tokenizer
|
14 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
-
|
16 |
-
# # Load the model with 4-bit quantization
|
17 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
# model_name,
|
19 |
-
# # quantization_config=quant_config,
|
20 |
-
# device_map=None,
|
21 |
-
# low_cpu_mem_usage=True
|
22 |
-
# )
|
23 |
-
|
24 |
-
# return model, tokenizer
|
25 |
-
|
26 |
-
|
27 |
-
def load_model_and_tokenizer():
|
28 |
-
# Base model
|
29 |
-
base_model_name = "unsloth/llama-3-8b-bnb-4bit"
|
30 |
-
adapter_name = "AIModels24/Indian_Constitution"
|
31 |
-
|
32 |
-
# Load the tokenizer
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
34 |
-
|
35 |
-
# Load the base model
|
36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
37 |
-
base_model_name,
|
38 |
-
device_map=None,
|
39 |
-
low_cpu_mem_usage=True,
|
40 |
-
use_cache=True
|
41 |
-
|
42 |
-
)
|
43 |
-
|
44 |
-
# Load the LoRA adapter
|
45 |
-
model = PeftModel.from_pretrained(model, adapter_name)
|
46 |
-
|
47 |
-
return model, tokenizer
|
48 |
-
|
49 |
-
|
50 |
-
# Load model and tokenizer using the function
|
51 |
-
model, tokenizer = load_model_and_tokenizer()
|
52 |
-
|
53 |
-
## prompt function
|
54 |
-
alpaca_prompt = "### Instruction:\n{}\n\n### Response:\n"
|
55 |
-
|
56 |
-
|
57 |
-
# Streamlit User Interface
|
58 |
-
st.title("भारतीय कानून व्यवस्था")
|
59 |
-
st.subheader("AI-powered responses for legal questions in Indian law")
|
60 |
-
|
61 |
-
# Input text box for user question
|
62 |
-
instruction = st.text_area("Enter your question:", placeholder="Ask a question about Indian law...")
|
63 |
-
|
64 |
-
# Generate response button
|
65 |
-
if st.button("Generate Response"):
|
66 |
-
if instruction.strip():
|
67 |
-
with st.spinner("Generating response..."):
|
68 |
-
# Prepare the prompt for the model
|
69 |
-
inputs = tokenizer(
|
70 |
-
[alpaca_prompt.format(instruction)],
|
71 |
-
return_tensors="pt"
|
72 |
-
).to("cuda")
|
73 |
-
|
74 |
-
# Generate the response
|
75 |
-
outputs = model.generate(**inputs, max_new_tokens=150, use_cache=True)
|
76 |
-
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
77 |
-
|
78 |
-
# Extract the clean response
|
79 |
-
response_cleaned = response.split("### Response:\n")[-1].strip()
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the model
|
6 |
+
model_name = "AIModels24/Indian_Constitution"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def generate_response(prompt):
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model.generate(inputs['input_ids'], max_length=50)
|
15 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
+
|
17 |
+
# Streamlit app interface
|
18 |
+
st.title("Text Generation with Hugging Face")
|
19 |
+
prompt = st.text_area("Enter your prompt:")
|
20 |
+
|
21 |
+
if st.button("Generate"):
|
22 |
+
response = generate_response(prompt)
|
23 |
+
st.write(response)
|