Update main.py
Browse files
main.py
CHANGED
|
@@ -5,7 +5,7 @@ import secrets
|
|
| 5 |
import string
|
| 6 |
import time
|
| 7 |
import tempfile
|
| 8 |
-
import ast
|
| 9 |
from typing import List, Optional, Union, Any
|
| 10 |
|
| 11 |
import httpx
|
|
@@ -14,11 +14,13 @@ from fastapi import FastAPI, HTTPException
|
|
| 14 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 15 |
from pydantic import BaseModel, Field, model_validator
|
| 16 |
|
| 17 |
-
#
|
| 18 |
from gradio_client import Client, handle_file
|
| 19 |
|
| 20 |
# --- Configuration ---
|
| 21 |
load_dotenv()
|
|
|
|
|
|
|
| 22 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
| 23 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
| 24 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
|
@@ -41,36 +43,43 @@ MODEL_ALIASES = {}
|
|
| 41 |
app = FastAPI(
|
| 42 |
title="OpenAI Compatible API",
|
| 43 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
| 44 |
-
version="1.1.
|
| 45 |
)
|
|
|
|
|
|
|
| 46 |
try:
|
| 47 |
ocr_client = Client("multimodalart/Florence-2-l4")
|
| 48 |
except Exception as e:
|
| 49 |
print(f"Warning: Could not initialize Gradio client for OCR: {e}")
|
| 50 |
ocr_client = None
|
| 51 |
|
|
|
|
| 52 |
# --- Pydantic Models ---
|
| 53 |
-
# (Pydantic models are unchanged and remain the same as before)
|
| 54 |
class Message(BaseModel):
|
| 55 |
role: str
|
| 56 |
content: str
|
|
|
|
| 57 |
class ChatRequest(BaseModel):
|
| 58 |
messages: List[Message]
|
| 59 |
model: str
|
| 60 |
stream: Optional[bool] = False
|
| 61 |
tools: Optional[Any] = None
|
|
|
|
| 62 |
class ImageGenerationRequest(BaseModel):
|
| 63 |
prompt: str
|
| 64 |
aspect_ratio: Optional[str] = "1:1"
|
| 65 |
n: Optional[int] = 1
|
| 66 |
user: Optional[str] = None
|
| 67 |
model: Optional[str] = "default"
|
|
|
|
| 68 |
class ModerationRequest(BaseModel):
|
| 69 |
input: Union[str, List[str]]
|
| 70 |
model: Optional[str] = "text-moderation-stable"
|
|
|
|
| 71 |
class OcrRequest(BaseModel):
|
| 72 |
image_url: Optional[str] = Field(None, description="URL of the image to process.")
|
| 73 |
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
|
|
|
|
| 74 |
@model_validator(mode='before')
|
| 75 |
@classmethod
|
| 76 |
def check_sources(cls, data: Any) -> Any:
|
|
@@ -80,116 +89,258 @@ class OcrRequest(BaseModel):
|
|
| 80 |
if data.get('image_url') and data.get('image_b64'):
|
| 81 |
raise ValueError('Provide either image_url or image_b64, not both.')
|
| 82 |
return data
|
|
|
|
| 83 |
class OcrResponse(BaseModel):
|
| 84 |
ocr_text: str
|
| 85 |
raw_response: dict
|
| 86 |
|
|
|
|
| 87 |
# --- Helper Function ---
|
| 88 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
|
|
|
| 89 |
population = string.ascii_letters + string.digits
|
| 90 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
| 91 |
return f"{prefix}{random_part}"
|
| 92 |
|
|
|
|
| 93 |
# === API Endpoints ===
|
| 94 |
|
| 95 |
@app.get("/v1/models", tags=["Models"])
|
| 96 |
async def list_models():
|
|
|
|
| 97 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
| 98 |
|
| 99 |
-
|
| 100 |
@app.post("/v1/chat/completions", tags=["Chat"])
|
| 101 |
async def chat_completion(request: ChatRequest):
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
if request.tools:
|
| 104 |
-
tool_prompt=f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
| 105 |
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
| 106 |
Response Format for tool call:
|
| 107 |
<tool_call>
|
| 108 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
| 109 |
</tool_call>"""
|
| 110 |
-
if request.messages[0].role=="system":
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
if request.stream:
|
| 114 |
async def event_stream():
|
| 115 |
-
created=int(time.time())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
try:
|
| 117 |
-
async with httpx.AsyncClient(timeout=120)as client:
|
| 118 |
-
async with client.stream("POST",CHAT_API_URL,headers=headers,json=payload)as response:
|
| 119 |
response.raise_for_status()
|
| 120 |
async for line in response.aiter_lines():
|
| 121 |
-
if not line:
|
|
|
|
|
|
|
| 122 |
if line.startswith("0:"):
|
| 123 |
-
try:
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if text_before:
|
| 136 |
-
delta={"content":text_before,"tool_calls":None}
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
if not in_tool_call:
|
| 139 |
-
delta={"content":content_piece}
|
| 140 |
-
if is_first_chunk:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
break
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
try:
|
| 155 |
-
async with httpx.AsyncClient(timeout=120)as client:
|
| 156 |
-
async with client.stream("POST",CHAT_API_URL,headers=headers,json=payload)as response:
|
| 157 |
response.raise_for_status()
|
| 158 |
async for chunk in response.aiter_lines():
|
| 159 |
if chunk.startswith("0:"):
|
| 160 |
-
try:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
@app.post("/v1/images/generations", tags=["Images"])
|
| 172 |
async def generate_images(request: ImageGenerationRequest):
|
| 173 |
-
|
|
|
|
| 174 |
try:
|
| 175 |
-
async with httpx.AsyncClient(timeout=120)as client:
|
| 176 |
for _ in range(request.n):
|
| 177 |
-
model=request.model or"default"
|
| 178 |
-
if model in["gpt-image-1","dall-e-3","dall-e-2","nextlm-image-1"]:
|
| 179 |
-
headers={'Content-Type':'application/json','User-Agent':'Mozilla/5.0','Referer':'https://www.chatwithmono.xyz/'}
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if SNAPZION_API_KEY:
|
| 183 |
-
upload_headers={"Authorization":SNAPZION_API_KEY}
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
-
# === REVISED AND FIXED OCR Endpoint ===
|
| 193 |
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
|
| 194 |
async def perform_ocr(request: OcrRequest):
|
| 195 |
"""
|
|
@@ -218,7 +369,7 @@ async def perform_ocr(request: OcrRequest):
|
|
| 218 |
raw_output = prediction[0]
|
| 219 |
raw_result_dict = {}
|
| 220 |
|
| 221 |
-
# ---
|
| 222 |
if isinstance(raw_output, str):
|
| 223 |
try:
|
| 224 |
# First, try to parse as standard JSON
|
|
@@ -234,17 +385,18 @@ async def perform_ocr(request: OcrRequest):
|
|
| 234 |
raw_result_dict = {"result": str(parsed_output)}
|
| 235 |
except (ValueError, SyntaxError):
|
| 236 |
# If all parsing fails, assume the string is the direct OCR text.
|
| 237 |
-
raw_result_dict = {"
|
| 238 |
elif isinstance(raw_output, dict):
|
| 239 |
# It's already a dictionary, use it directly
|
| 240 |
raw_result_dict = raw_output
|
| 241 |
else:
|
| 242 |
# Handle other unexpected data types
|
| 243 |
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
|
| 244 |
-
# --- END: ROBUST PARSING LOGIC ---
|
| 245 |
|
| 246 |
-
# Extract text from the dictionary, with fallbacks
|
| 247 |
-
ocr_text = raw_result_dict.get("OCR",
|
|
|
|
|
|
|
| 248 |
|
| 249 |
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
|
| 250 |
|
|
@@ -256,22 +408,69 @@ async def perform_ocr(request: OcrRequest):
|
|
| 256 |
if temp_file_path and os.path.exists(temp_file_path):
|
| 257 |
os.unlink(temp_file_path)
|
| 258 |
|
|
|
|
| 259 |
@app.post("/v1/moderations", tags=["Moderation"])
|
| 260 |
async def create_moderation(request: ModerationRequest):
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
try:
|
| 265 |
-
async with httpx.AsyncClient(timeout=30)as client:
|
| 266 |
for text_input in input_texts:
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
results.append(result_item)
|
| 272 |
-
|
| 273 |
-
except
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
|
| 277 |
# --- Main Execution ---
|
|
|
|
| 5 |
import string
|
| 6 |
import time
|
| 7 |
import tempfile
|
| 8 |
+
import ast
|
| 9 |
from typing import List, Optional, Union, Any
|
| 10 |
|
| 11 |
import httpx
|
|
|
|
| 14 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 15 |
from pydantic import BaseModel, Field, model_validator
|
| 16 |
|
| 17 |
+
# Import for OCR functionality
|
| 18 |
from gradio_client import Client, handle_file
|
| 19 |
|
| 20 |
# --- Configuration ---
|
| 21 |
load_dotenv()
|
| 22 |
+
|
| 23 |
+
# Environment variables for external services
|
| 24 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
| 25 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
| 26 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
|
|
|
| 43 |
app = FastAPI(
|
| 44 |
title="OpenAI Compatible API",
|
| 45 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
| 46 |
+
version="1.1.3" # Version reflects final formatting and fixes
|
| 47 |
)
|
| 48 |
+
|
| 49 |
+
# Initialize Gradio client globally to avoid re-initialization on each request
|
| 50 |
try:
|
| 51 |
ocr_client = Client("multimodalart/Florence-2-l4")
|
| 52 |
except Exception as e:
|
| 53 |
print(f"Warning: Could not initialize Gradio client for OCR: {e}")
|
| 54 |
ocr_client = None
|
| 55 |
|
| 56 |
+
|
| 57 |
# --- Pydantic Models ---
|
|
|
|
| 58 |
class Message(BaseModel):
|
| 59 |
role: str
|
| 60 |
content: str
|
| 61 |
+
|
| 62 |
class ChatRequest(BaseModel):
|
| 63 |
messages: List[Message]
|
| 64 |
model: str
|
| 65 |
stream: Optional[bool] = False
|
| 66 |
tools: Optional[Any] = None
|
| 67 |
+
|
| 68 |
class ImageGenerationRequest(BaseModel):
|
| 69 |
prompt: str
|
| 70 |
aspect_ratio: Optional[str] = "1:1"
|
| 71 |
n: Optional[int] = 1
|
| 72 |
user: Optional[str] = None
|
| 73 |
model: Optional[str] = "default"
|
| 74 |
+
|
| 75 |
class ModerationRequest(BaseModel):
|
| 76 |
input: Union[str, List[str]]
|
| 77 |
model: Optional[str] = "text-moderation-stable"
|
| 78 |
+
|
| 79 |
class OcrRequest(BaseModel):
|
| 80 |
image_url: Optional[str] = Field(None, description="URL of the image to process.")
|
| 81 |
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
|
| 82 |
+
|
| 83 |
@model_validator(mode='before')
|
| 84 |
@classmethod
|
| 85 |
def check_sources(cls, data: Any) -> Any:
|
|
|
|
| 89 |
if data.get('image_url') and data.get('image_b64'):
|
| 90 |
raise ValueError('Provide either image_url or image_b64, not both.')
|
| 91 |
return data
|
| 92 |
+
|
| 93 |
class OcrResponse(BaseModel):
|
| 94 |
ocr_text: str
|
| 95 |
raw_response: dict
|
| 96 |
|
| 97 |
+
|
| 98 |
# --- Helper Function ---
|
| 99 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
| 100 |
+
"""Generates a cryptographically secure, random alphanumeric ID."""
|
| 101 |
population = string.ascii_letters + string.digits
|
| 102 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
| 103 |
return f"{prefix}{random_part}"
|
| 104 |
|
| 105 |
+
|
| 106 |
# === API Endpoints ===
|
| 107 |
|
| 108 |
@app.get("/v1/models", tags=["Models"])
|
| 109 |
async def list_models():
|
| 110 |
+
"""Lists the available models."""
|
| 111 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
| 112 |
|
| 113 |
+
|
| 114 |
@app.post("/v1/chat/completions", tags=["Chat"])
|
| 115 |
async def chat_completion(request: ChatRequest):
|
| 116 |
+
"""Handles chat completion requests, supporting streaming and non-streaming."""
|
| 117 |
+
model_id = MODEL_ALIASES.get(request.model, request.model)
|
| 118 |
+
chat_id = generate_random_id("chatcmpl-")
|
| 119 |
+
headers = {
|
| 120 |
+
'accept': 'text/event-stream',
|
| 121 |
+
'content-type': 'application/json',
|
| 122 |
+
'origin': 'https://www.chatwithmono.xyz',
|
| 123 |
+
'referer': 'https://www.chatwithmono.xyz/',
|
| 124 |
+
'user-agent': 'Mozilla/5.0',
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
if request.tools:
|
| 128 |
+
tool_prompt = f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
| 129 |
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
| 130 |
Response Format for tool call:
|
| 131 |
<tool_call>
|
| 132 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
| 133 |
</tool_call>"""
|
| 134 |
+
if request.messages[0].role == "system":
|
| 135 |
+
request.messages[0].content += "\n\n" + tool_prompt
|
| 136 |
+
else:
|
| 137 |
+
request.messages.insert(0, Message(role="system", content=tool_prompt))
|
| 138 |
+
|
| 139 |
+
payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}
|
| 140 |
+
|
| 141 |
if request.stream:
|
| 142 |
async def event_stream():
|
| 143 |
+
created = int(time.time())
|
| 144 |
+
usage_info = None
|
| 145 |
+
is_first_chunk = True
|
| 146 |
+
tool_call_buffer = ""
|
| 147 |
+
in_tool_call = False
|
| 148 |
+
|
| 149 |
try:
|
| 150 |
+
async with httpx.AsyncClient(timeout=120) as client:
|
| 151 |
+
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
|
| 152 |
response.raise_for_status()
|
| 153 |
async for line in response.aiter_lines():
|
| 154 |
+
if not line:
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
if line.startswith("0:"):
|
| 158 |
+
try:
|
| 159 |
+
content_piece = json.loads(line[2:])
|
| 160 |
+
except json.JSONDecodeError:
|
| 161 |
+
continue
|
| 162 |
+
|
| 163 |
+
current_buffer = content_piece
|
| 164 |
+
if in_tool_call:
|
| 165 |
+
current_buffer = tool_call_buffer + content_piece
|
| 166 |
+
|
| 167 |
+
if "</tool_call>" in current_buffer:
|
| 168 |
+
tool_str = current_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
|
| 169 |
+
tool_json = json.loads(tool_str.strip())
|
| 170 |
+
delta = {
|
| 171 |
+
"content": None,
|
| 172 |
+
"tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
|
| 173 |
+
"function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
|
| 174 |
+
}
|
| 175 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
| 176 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
| 177 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
| 178 |
+
|
| 179 |
+
in_tool_call = False
|
| 180 |
+
tool_call_buffer = ""
|
| 181 |
+
remaining_text = current_buffer.split("</tool_call>", 1)[1]
|
| 182 |
+
if remaining_text:
|
| 183 |
+
content_piece = remaining_text
|
| 184 |
+
else:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
if "<tool_call>" in content_piece:
|
| 188 |
+
in_tool_call = True
|
| 189 |
+
tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
|
| 190 |
+
text_before = content_piece.split("<tool_call>", 1)[0]
|
| 191 |
if text_before:
|
| 192 |
+
delta = {"content": text_before, "tool_calls": None}
|
| 193 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
| 194 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
| 195 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
| 196 |
+
if "</tool_call>" not in tool_call_buffer:
|
| 197 |
+
continue
|
| 198 |
+
|
| 199 |
if not in_tool_call:
|
| 200 |
+
delta = {"content": content_piece}
|
| 201 |
+
if is_first_chunk:
|
| 202 |
+
delta["role"] = "assistant"
|
| 203 |
+
is_first_chunk = False
|
| 204 |
+
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
| 205 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
| 206 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
| 207 |
+
|
| 208 |
+
elif line.startswith(("e:", "d:")):
|
| 209 |
+
try:
|
| 210 |
+
usage_info = json.loads(line[2:]).get("usage")
|
| 211 |
+
except (json.JSONDecodeError, AttributeError):
|
| 212 |
+
pass
|
| 213 |
break
|
| 214 |
+
|
| 215 |
+
final_usage = None
|
| 216 |
+
if usage_info:
|
| 217 |
+
prompt_tokens = usage_info.get("promptTokens", 0)
|
| 218 |
+
completion_tokens = usage_info.get("completionTokens", 0)
|
| 219 |
+
final_usage = {
|
| 220 |
+
"prompt_tokens": prompt_tokens,
|
| 221 |
+
"completion_tokens": completion_tokens,
|
| 222 |
+
"total_tokens": prompt_tokens + completion_tokens
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
finish_reason = "tool_calls" if in_tool_call else "stop"
|
| 226 |
+
done_chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
| 227 |
+
"choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}], "usage": final_usage}
|
| 228 |
+
yield f"data: {json.dumps(done_chunk)}\n\n"
|
| 229 |
+
|
| 230 |
+
except httpx.HTTPStatusError as e:
|
| 231 |
+
error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
|
| 232 |
+
yield f"data: {json.dumps(error_content)}\n\n"
|
| 233 |
+
finally:
|
| 234 |
+
yield "data: [DONE]\n\n"
|
| 235 |
+
|
| 236 |
+
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
| 237 |
+
|
| 238 |
+
else: # Non-streaming response
|
| 239 |
+
full_response, usage_info = "", {}
|
| 240 |
try:
|
| 241 |
+
async with httpx.AsyncClient(timeout=120) as client:
|
| 242 |
+
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
|
| 243 |
response.raise_for_status()
|
| 244 |
async for chunk in response.aiter_lines():
|
| 245 |
if chunk.startswith("0:"):
|
| 246 |
+
try:
|
| 247 |
+
full_response += json.loads(chunk[2:])
|
| 248 |
+
except:
|
| 249 |
+
continue
|
| 250 |
+
elif chunk.startswith(("e:", "d:")):
|
| 251 |
+
try:
|
| 252 |
+
usage_info = json.loads(chunk[2:]).get("usage", {})
|
| 253 |
+
except:
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
tool_calls = None
|
| 257 |
+
content_response = full_response
|
| 258 |
+
finish_reason = "stop"
|
| 259 |
+
if "<tool_call>" in full_response and "</tool_call>" in full_response:
|
| 260 |
+
tool_call_str = full_response.split("<tool_call>")[1].split("</tool_call>")[0]
|
| 261 |
+
tool_call = json.loads(tool_call_str.strip())
|
| 262 |
+
tool_calls = [{
|
| 263 |
+
"id": generate_random_id("call_"),
|
| 264 |
+
"type": "function",
|
| 265 |
+
"function": {
|
| 266 |
+
"name": tool_call["name"],
|
| 267 |
+
"arguments": json.dumps(tool_call["parameters"])
|
| 268 |
+
}
|
| 269 |
+
}]
|
| 270 |
+
content_response = None
|
| 271 |
+
finish_reason = "tool_calls"
|
| 272 |
+
|
| 273 |
+
prompt_tokens = usage_info.get("promptTokens", 0)
|
| 274 |
+
completion_tokens = usage_info.get("completionTokens", 0)
|
| 275 |
+
|
| 276 |
+
return JSONResponse(content={
|
| 277 |
+
"id": chat_id,
|
| 278 |
+
"object": "chat.completion",
|
| 279 |
+
"created": int(time.time()),
|
| 280 |
+
"model": model_id,
|
| 281 |
+
"choices": [{
|
| 282 |
+
"index": 0,
|
| 283 |
+
"message": {
|
| 284 |
+
"role": "assistant",
|
| 285 |
+
"content": content_response,
|
| 286 |
+
"tool_calls": tool_calls
|
| 287 |
+
},
|
| 288 |
+
"finish_reason": finish_reason
|
| 289 |
+
}],
|
| 290 |
+
"usage": {
|
| 291 |
+
"prompt_tokens": prompt_tokens,
|
| 292 |
+
"completion_tokens": completion_tokens,
|
| 293 |
+
"total_tokens": prompt_tokens + completion_tokens
|
| 294 |
+
}
|
| 295 |
+
})
|
| 296 |
+
except httpx.HTTPStatusError as e:
|
| 297 |
+
return JSONResponse(
|
| 298 |
+
status_code=e.response.status_code,
|
| 299 |
+
content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}}
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
|
| 303 |
@app.post("/v1/images/generations", tags=["Images"])
|
| 304 |
async def generate_images(request: ImageGenerationRequest):
|
| 305 |
+
"""Handles image generation requests."""
|
| 306 |
+
results = []
|
| 307 |
try:
|
| 308 |
+
async with httpx.AsyncClient(timeout=120) as client:
|
| 309 |
for _ in range(request.n):
|
| 310 |
+
model = request.model or "default"
|
| 311 |
+
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
|
| 312 |
+
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
| 313 |
+
payload = {"prompt": request.prompt, "model": model}
|
| 314 |
+
resp = await client.post(IMAGE_GEN_API_URL, headers=headers, json=payload)
|
| 315 |
+
resp.raise_for_status()
|
| 316 |
+
data = resp.json()
|
| 317 |
+
b64_image = data.get("image")
|
| 318 |
+
if not b64_image:
|
| 319 |
+
return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
|
| 320 |
+
|
| 321 |
+
image_url = f"data:image/png;base64,{b64_image}"
|
| 322 |
if SNAPZION_API_KEY:
|
| 323 |
+
upload_headers = {"Authorization": SNAPZION_API_KEY}
|
| 324 |
+
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
|
| 325 |
+
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
|
| 326 |
+
if upload_resp.status_code == 200:
|
| 327 |
+
image_url = upload_resp.json().get("url", image_url)
|
| 328 |
+
|
| 329 |
+
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
|
| 330 |
+
else:
|
| 331 |
+
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
|
| 332 |
+
resp = await client.get(IMAGE_API_URL, params=params)
|
| 333 |
+
resp.raise_for_status()
|
| 334 |
+
data = resp.json()
|
| 335 |
+
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
|
| 336 |
+
except httpx.HTTPStatusError as e:
|
| 337 |
+
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
|
| 338 |
+
except Exception as e:
|
| 339 |
+
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
| 340 |
+
|
| 341 |
+
return {"created": int(time.time()), "data": results}
|
| 342 |
|
| 343 |
|
|
|
|
| 344 |
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
|
| 345 |
async def perform_ocr(request: OcrRequest):
|
| 346 |
"""
|
|
|
|
| 369 |
raw_output = prediction[0]
|
| 370 |
raw_result_dict = {}
|
| 371 |
|
| 372 |
+
# --- Robust Parsing Logic ---
|
| 373 |
if isinstance(raw_output, str):
|
| 374 |
try:
|
| 375 |
# First, try to parse as standard JSON
|
|
|
|
| 385 |
raw_result_dict = {"result": str(parsed_output)}
|
| 386 |
except (ValueError, SyntaxError):
|
| 387 |
# If all parsing fails, assume the string is the direct OCR text.
|
| 388 |
+
raw_result_dict = {"ocr_text_from_string": raw_output}
|
| 389 |
elif isinstance(raw_output, dict):
|
| 390 |
# It's already a dictionary, use it directly
|
| 391 |
raw_result_dict = raw_output
|
| 392 |
else:
|
| 393 |
# Handle other unexpected data types
|
| 394 |
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
|
|
|
|
| 395 |
|
| 396 |
+
# Extract text from the dictionary, with multiple fallbacks
|
| 397 |
+
ocr_text = raw_result_dict.get("OCR",
|
| 398 |
+
raw_result_dict.get("ocr_text_from_string",
|
| 399 |
+
str(raw_result_dict)))
|
| 400 |
|
| 401 |
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
|
| 402 |
|
|
|
|
| 408 |
if temp_file_path and os.path.exists(temp_file_path):
|
| 409 |
os.unlink(temp_file_path)
|
| 410 |
|
| 411 |
+
|
| 412 |
@app.post("/v1/moderations", tags=["Moderation"])
|
| 413 |
async def create_moderation(request: ModerationRequest):
|
| 414 |
+
"""Handles moderation requests, conforming to the OpenAI API specification."""
|
| 415 |
+
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
| 416 |
+
if not input_texts:
|
| 417 |
+
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})
|
| 418 |
+
|
| 419 |
+
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
| 420 |
+
results = []
|
| 421 |
+
|
| 422 |
try:
|
| 423 |
+
async with httpx.AsyncClient(timeout=30) as client:
|
| 424 |
for text_input in input_texts:
|
| 425 |
+
payload = {"text": text_input}
|
| 426 |
+
resp = await client.post(MODERATION_API_URL, headers=headers, json=payload)
|
| 427 |
+
resp.raise_for_status()
|
| 428 |
+
|
| 429 |
+
upstream_data = resp.json()
|
| 430 |
+
upstream_categories = upstream_data.get("categories", {})
|
| 431 |
+
|
| 432 |
+
openai_categories = {
|
| 433 |
+
"hate": upstream_categories.get("hate", False),
|
| 434 |
+
"hate/threatening": False,
|
| 435 |
+
"harassment": False,
|
| 436 |
+
"harassment/threatening": False,
|
| 437 |
+
"self-harm": upstream_categories.get("self-harm", False),
|
| 438 |
+
"self-harm/intent": False,
|
| 439 |
+
"self-harm/instructions": False,
|
| 440 |
+
"sexual": upstream_categories.get("sexual", False),
|
| 441 |
+
"sexual/minors": False,
|
| 442 |
+
"violence": upstream_categories.get("violence", False),
|
| 443 |
+
"violence/graphic": False,
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
result_item = {
|
| 447 |
+
"flagged": upstream_data.get("overall_sentiment") == "flagged",
|
| 448 |
+
"categories": openai_categories,
|
| 449 |
+
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
if reason := upstream_data.get("reason"):
|
| 453 |
+
result_item["reason"] = reason
|
| 454 |
+
|
| 455 |
results.append(result_item)
|
| 456 |
+
|
| 457 |
+
except httpx.HTTPStatusError as e:
|
| 458 |
+
return JSONResponse(
|
| 459 |
+
status_code=502,
|
| 460 |
+
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "details": e.response.text}}
|
| 461 |
+
)
|
| 462 |
+
except Exception as e:
|
| 463 |
+
return JSONResponse(
|
| 464 |
+
status_code=500,
|
| 465 |
+
content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}}
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
final_response = {
|
| 469 |
+
"id": generate_random_id("modr-"),
|
| 470 |
+
"model": request.model,
|
| 471 |
+
"results": results,
|
| 472 |
+
}
|
| 473 |
+
return JSONResponse(content=final_response)
|
| 474 |
|
| 475 |
|
| 476 |
# --- Main Execution ---
|