|
from tclogger import logger |
|
from transformers import AutoTokenizer |
|
|
|
from constants.models import MODEL_MAP, TOKEN_LIMIT_MAP, TOKEN_RESERVED |
|
|
|
|
|
class TokenChecker: |
|
def __init__(self, input_str: str, model: str): |
|
self.input_str = input_str |
|
|
|
if model in MODEL_MAP.keys(): |
|
self.model = model |
|
else: |
|
self.model = "nous-mixtral-8x7b" |
|
|
|
self.model_fullname = MODEL_MAP[self.model] |
|
|
|
|
|
GATED_MODEL_MAP = { |
|
"llama3-70b": "NousResearch/Meta-Llama-3-70B", |
|
"gemma-7b": "unsloth/gemma-7b", |
|
"mistral-7b": "dfurman/Mistral-7B-Instruct-v0.2", |
|
"mixtral-8x7b": "dfurman/Mixtral-8x7B-Instruct-v0.1", |
|
} |
|
if self.model in GATED_MODEL_MAP.keys(): |
|
self.tokenizer = AutoTokenizer.from_pretrained(GATED_MODEL_MAP[self.model]) |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname) |
|
|
|
def count_tokens(self): |
|
token_count = len(self.tokenizer.encode(self.input_str)) |
|
logger.note(f"Prompt Token Count: {token_count}") |
|
return token_count |
|
|
|
def get_token_limit(self): |
|
return TOKEN_LIMIT_MAP[self.model] |
|
|
|
def get_token_redundancy(self): |
|
return int(self.get_token_limit() - TOKEN_RESERVED - self.count_tokens()) |
|
|
|
def check_token_limit(self): |
|
if self.get_token_redundancy() <= 0: |
|
raise ValueError( |
|
f"Prompt exceeded token limit: {self.count_tokens()} > {self.get_token_limit()}" |
|
) |
|
return True |
|
|