Spaces:
AIMan2001
/
Runtime error

RVC_HF / infer /modules /vc /modules.py
r3gm's picture
Upload 288 files
7bc29af
import os, sys
import traceback
import logging
now_dir = os.getcwd()
sys.path.append(now_dir)
logger = logging.getLogger(__name__)
import lib.globals.globals as rvc_globals
import numpy as np
import soundfile as sf
import torch
from io import BytesIO
from infer.lib.audio import load_audio
from infer.lib.audio import wav2
from infer.lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from infer.modules.vc.pipeline import Pipeline
from infer.modules.vc.utils import *
import time
import scipy.io.wavfile as wavfile
def note_to_hz(note_name):
SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2}
pitch_class, octave = note_name[:-1], int(note_name[-1])
semitone = SEMITONES[pitch_class]
note_number = 12 * (octave - 4) + semitone
frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number
return frequency
class VC:
def __init__(self, config):
self.n_spk = None
self.tgt_sr = None
self.net_g = None
self.pipeline = None
self.cpt = None
self.version = None
self.if_f0 = None
self.version = None
self.hubert_model = None
self.config = config
def get_vc(self, sid, *to_return_protect):
logger.info("Get sid: " + sid)
to_return_protect0 = {
"visible": self.if_f0 != 0,
"value": to_return_protect[0]
if self.if_f0 != 0 and to_return_protect
else 0.5,
"__type__": "update",
}
to_return_protect1 = {
"visible": self.if_f0 != 0,
"value": to_return_protect[1]
if self.if_f0 != 0 and to_return_protect
else 0.33,
"__type__": "update",
}
if not sid:
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
logger.info("Clean model cache")
del (
self.net_g,
self.n_spk,
self.vc,
self.hubert_model,
self.tgt_sr,
) # ,cpt
self.hubert_model = (
self.net_g
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
if self.version == "v1":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
elif self.version == "v2":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs768NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
{"visible": False, "__type__": "update"},
{
"visible": True,
"value": to_return_protect0,
"__type__": "update",
},
{
"visible": True,
"value": to_return_protect1,
"__type__": "update",
},
"",
"",
)
#person = f'{os.getenv("weight_root")}/{sid}'
person = f'{sid}'
#logger.info(f"Loading: {person}")
logger.info(f"Loading...")
self.cpt = torch.load(person, map_location="cpu")
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
synthesizer_class = {
("v1", 1): SynthesizerTrnMs256NSFsid,
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
("v2", 1): SynthesizerTrnMs768NSFsid,
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
}
self.net_g = synthesizer_class.get(
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid
)(*self.cpt["config"], is_half=self.config.is_half)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
if self.config.is_half:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
self.pipeline = Pipeline(self.tgt_sr, self.config)
n_spk = self.cpt["config"][-3]
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
logger.info("Select index: " + index["value"])
return (
(
{"visible": False, "maximum": n_spk, "__type__": "update"},
to_return_protect0,
to_return_protect1
)
if to_return_protect
else {"visible": False, "maximum": n_spk, "__type__": "update"}
)
def vc_single(
self,
sid,
input_audio_path0,
input_audio_path1,
f0_up_key,
f0_file,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
crepe_hop_length,
f0_min,
note_min,
f0_max,
note_max,
f0_autotune,
):
global total_time
total_time = 0
start_time = time.time()
if not input_audio_path0 and not input_audio_path1:
return "You need to upload an audio", None
if (not os.path.exists(input_audio_path0)) and (not os.path.exists(os.path.join(now_dir, input_audio_path0))):
return "Audio was not properly selected or doesn't exist", None
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"\nStarting inference for '{os.path.basename(input_audio_path1)}'")
print("-------------------")
f0_up_key = int(f0_up_key)
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
f0_min = note_to_hz(note_min) if note_min else 50
f0_max = note_to_hz(note_max) if note_max else 1100
print(f"Converted Min pitch: freq - {f0_min}\n"
f"Converted Max pitch: freq - {f0_max}")
else:
f0_min = f0_min or 50
f0_max = f0_max or 1100
try:
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"Attempting to load {input_audio_path1}....")
audio = load_audio(file=input_audio_path1,
sr=16000,
DoFormant=rvc_globals.DoFormant,
Quefrency=rvc_globals.Quefrency,
Timbre=rvc_globals.Timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if self.hubert_model is None:
self.hubert_model = load_hubert(self.config)
try:
self.if_f0 = self.cpt.get("f0", 1)
except NameError:
message = "Model was not properly selected"
print(message)
return message, None
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
if file_index != ""
else file_index2
) # 防止小白写错,自动帮他替换掉
try:
audio_opt = self.pipeline.pipeline(
self.hubert_model,
self.net_g,
sid,
audio,
input_audio_path1,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
self.if_f0,
filter_radius,
self.tgt_sr,
resample_sr,
rms_mix_rate,
self.version,
protect,
crepe_hop_length,
f0_autotune,
f0_file=f0_file,
f0_min=f0_min,
f0_max=f0_max
)
except AssertionError:
message = "Mismatching index version detected (v1 with v2, or v2 with v1)."
print(message)
return message, None
except NameError:
message = "RVC libraries are still loading. Please try again in a few seconds."
print(message)
return message, None
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
index_info = (
"Index:\n%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
end_time = time.time()
total_time = end_time - start_time
output_folder = "audio-outputs"
os.makedirs(output_folder, exist_ok=True)
output_filename = "generated_audio_{}.wav"
output_count = 1
while True:
current_output_path = os.path.join(output_folder, output_filename.format(output_count))
if not os.path.exists(current_output_path):
break
output_count += 1
wavfile.write(current_output_path, self.tgt_sr, audio_opt)
print(f"Generated audio saved to: {current_output_path}")
return f"Success.\n {index_info}\nTime:\n npy:{times[0]}, f0:{times[1]}, infer:{times[2]}\nTotal Time: {total_time} seconds", (self.tgt_sr, audio_opt)
except:
info = traceback.format_exc()
logger.warn(info)
return info, (None, None)
def vc_single_dont_save(
self,
sid,
input_audio_path0,
input_audio_path1,
f0_up_key,
f0_file,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
crepe_hop_length,
f0_min,
note_min,
f0_max,
note_max,
f0_autotune,
):
global total_time
total_time = 0
start_time = time.time()
if not input_audio_path0 and not input_audio_path1:
return "You need to upload an audio", None
if (not os.path.exists(input_audio_path0)) and (not os.path.exists(os.path.join(now_dir, input_audio_path0))):
return "Audio was not properly selected or doesn't exist", None
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"\nStarting inference for '{os.path.basename(input_audio_path1)}'")
print("-------------------")
f0_up_key = int(f0_up_key)
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
f0_min = note_to_hz(note_min) if note_min else 50
f0_max = note_to_hz(note_max) if note_max else 1100
print(f"Converted Min pitch: freq - {f0_min}\n"
f"Converted Max pitch: freq - {f0_max}")
else:
f0_min = f0_min or 50
f0_max = f0_max or 1100
try:
input_audio_path1 = input_audio_path1 or input_audio_path0
print(f"Attempting to load {input_audio_path1}....")
audio = load_audio(file=input_audio_path1,
sr=16000,
DoFormant=rvc_globals.DoFormant,
Quefrency=rvc_globals.Quefrency,
Timbre=rvc_globals.Timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if self.hubert_model is None:
self.hubert_model = load_hubert(self.config)
try:
self.if_f0 = self.cpt.get("f0", 1)
except NameError:
message = "Model was not properly selected"
print(message)
return message, None
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
if file_index != ""
else file_index2
) # 防止小白写错,自动帮他替换掉
try:
audio_opt = self.pipeline.pipeline(
self.hubert_model,
self.net_g,
sid,
audio,
input_audio_path1,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
self.if_f0,
filter_radius,
self.tgt_sr,
resample_sr,
rms_mix_rate,
self.version,
protect,
crepe_hop_length,
f0_autotune,
f0_file=f0_file,
f0_min=f0_min,
f0_max=f0_max
)
except AssertionError:
message = "Mismatching index version detected (v1 with v2, or v2 with v1)."
print(message)
return message, None
except NameError:
message = "RVC libraries are still loading. Please try again in a few seconds."
print(message)
return message, None
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
index_info = (
"Index:\n%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
end_time = time.time()
total_time = end_time - start_time
return f"Success.\n {index_info}\nTime:\n npy:{times[0]}, f0:{times[1]}, infer:{times[2]}\nTotal Time: {total_time} seconds", (self.tgt_sr, audio_opt)
except:
info = traceback.format_exc()
logger.warn(info)
return info, (None, None)
def vc_multi(
self,
sid,
dir_path,
opt_root,
paths,
f0_up_key,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
format1,
crepe_hop_length,
f0_min,
note_min,
f0_max,
note_max,
f0_autotune,
):
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
f0_min = note_to_hz(note_min) if note_min else 50
f0_max = note_to_hz(note_max) if note_max else 1100
print(f"Converted Min pitch: freq - {f0_min}\n"
f"Converted Max pitch: freq - {f0_max}")
else:
f0_min = f0_min or 50
f0_max = f0_max or 1100
try:
dir_path = (
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
os.makedirs(opt_root, exist_ok=True)
try:
if dir_path != "":
paths = [
os.path.join(dir_path, name) for name in os.listdir(dir_path)
]
else:
paths = [path.name for path in paths]
except:
traceback.print_exc()
paths = [path.name for path in paths]
infos = []
for path in paths:
info, opt = self.vc_single(
sid,
path,
f0_up_key,
None,
f0_method,
file_index,
file_index2,
# file_big_npy,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
)
if "Success" in info:
try:
tgt_sr, audio_opt = opt
if format1 in ["wav", "flac"]:
sf.write(
"%s/%s.%s"
% (opt_root, os.path.basename(path), format1),
audio_opt,
tgt_sr,
)
else:
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1)
with BytesIO() as wavf:
sf.write(
wavf,
audio_opt,
tgt_sr,
format="wav"
)
wavf.seek(0, 0)
with open(path, "wb") as outf:
wav2(wavf, outf, format1)
except:
info += traceback.format_exc()
infos.append("%s->%s" % (os.path.basename(path), info))
yield "\n".join(infos)
yield "\n".join(infos)
except:
yield traceback.format_exc()