TA commited on
Commit
ebe55ae
·
1 Parent(s): ff5d575

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -18
app.py CHANGED
@@ -4,8 +4,15 @@ import requests
4
 
5
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
  TITLE = "Image Prompter"
7
- EXAMPLE_PROMPT = "A Reflective cat between stars."
8
- EXAMPLE_IMAGE_URL = "https://www.bing.com/images/create/a-black-cat-with-a-shiny2c-reflective-coat-is-float/1-656c50e048424f578a489a4875acd14f?id=%2b0DNSc2C8Sw26e32dIzHZA%3d%3d&view=detailv2&idpp=genimg&idpclose=1&FORM=SYDBIC"
 
 
 
 
 
 
 
9
 
10
  zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
11
 
@@ -13,29 +20,41 @@ HF_TOKEN = os.getenv("HF_TOKEN")
13
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
14
 
15
  def build_input_prompt(message, chatbot, system_prompt):
 
 
 
16
  input_prompt = "\n" + system_prompt + "</s>\n\n"
17
  for interaction in chatbot:
18
  input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
 
19
  input_prompt = input_prompt + str(message) + "</s>\n"
20
  return input_prompt
21
 
 
22
  def post_request_beta(payload):
 
 
 
23
  response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
24
- response.raise_for_status()
25
  return response.json()
26
 
27
- def predict_beta(message, chatbot=None, system_prompt=""):
28
- chatbot = [] if chatbot is None else chatbot # Ensure chatbot is not None
29
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
30
- data = {"inputs": input_prompt}
 
 
 
31
  try:
32
  response_data = post_request_beta(data)
33
  json_obj = response_data[0]
 
34
  if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
35
  bot_message = json_obj['generated_text']
36
  return bot_message
37
  elif 'error' in json_obj:
38
- raise gr.Error(json_obj['error'] + ' Please refresh and try again with a smaller input prompt')
39
  else:
40
  warning_msg = f"Unexpected response: {json_obj}"
41
  raise gr.Error(warning_msg)
@@ -46,18 +65,22 @@ def predict_beta(message, chatbot=None, system_prompt=""):
46
  error_msg = f"Failed to decode response as JSON: {str(e)}"
47
  raise gr.Error(error_msg)
48
 
49
- def test_preview_chatbot(message, history=None):
50
- history = [] if history is None else history # Ensure history is not None
51
  response = predict_beta(message, history, SYSTEM_PROMPT)
52
- return response, EXAMPLE_IMAGE_URL
 
 
 
 
 
 
 
 
 
53
 
 
 
54
 
55
- # Launch the interface
56
- gr.Interface(
57
- fn=test_preview_chatbot,
58
- live=False,
59
- examples=[[EXAMPLE_PROMPT]],
60
- inputs=gr.Textbox(scale=7, container=False, value=EXAMPLE_PROMPT),
61
- outputs=[gr.Textbox(), gr.Image()],
62
- ).launch(share=True)
63
 
 
 
4
 
5
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
  TITLE = "Image Prompter"
7
+ EXAMPLE_INPUT = "A Reflective cat between stars."
8
+
9
+ html_temp = """
10
+ <div style="text-align: center;">
11
+ <h1>{}</h1>
12
+ <img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width:300px;height:300px;'>
13
+ <p>{}</p>
14
+ </div>
15
+ """.format(TITLE, EXAMPLE_INPUT)
16
 
17
  zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
18
 
 
20
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
21
 
22
  def build_input_prompt(message, chatbot, system_prompt):
23
+ """
24
+ Constructs the input prompt string from the chatbot interactions and the current message.
25
+ """
26
  input_prompt = "\n" + system_prompt + "</s>\n\n"
27
  for interaction in chatbot:
28
  input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
29
+
30
  input_prompt = input_prompt + str(message) + "</s>\n"
31
  return input_prompt
32
 
33
+
34
  def post_request_beta(payload):
35
+ """
36
+ Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
37
+ """
38
  response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
39
+ response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
40
  return response.json()
41
 
42
+
43
+ def predict_beta(message, chatbot=[], system_prompt=""):
44
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
45
+ data = {
46
+ "inputs": input_prompt
47
+ }
48
+
49
  try:
50
  response_data = post_request_beta(data)
51
  json_obj = response_data[0]
52
+
53
  if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
54
  bot_message = json_obj['generated_text']
55
  return bot_message
56
  elif 'error' in json_obj:
57
+ raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
58
  else:
59
  warning_msg = f"Unexpected response: {json_obj}"
60
  raise gr.Error(warning_msg)
 
65
  error_msg = f"Failed to decode response as JSON: {str(e)}"
66
  raise gr.Error(error_msg)
67
 
68
+ def test_preview_chatbot(message, history):
 
69
  response = predict_beta(message, history, SYSTEM_PROMPT)
70
+ text_start = response.rfind("", ) + len("")
71
+ response = response[text_start:]
72
+ return response
73
+
74
+
75
+ welcome_preview_message = f"""
76
+ Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
77
+
78
+ "{EXAMPLE_INPUT}"
79
+ """
80
 
81
+ chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
82
+ textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
83
 
84
+ demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, title=None, html=html_temp)
 
 
 
 
 
 
 
85
 
86
+ demo.launch(share=True)