Spaces:
Sleeping
Sleeping
archive the files.
Browse files- app.py +6 -15
- laion10M_epoch_6_model_wo_ema.ckpt → checkpoints/laion10M_epoch_6_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_10_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_20_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt +0 -0
- textcaps5K_epoch_40_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt +0 -0
- cldm/ddim_hacked.py +0 -8
- config_ema.yaml +0 -88
- config_ema_unlock.yaml +0 -88
- ldm/models/ldm_autoencoder.py +0 -443
app.py
CHANGED
@@ -8,7 +8,7 @@ import torch
|
|
8 |
import time
|
9 |
from PIL import Image
|
10 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
11 |
-
from pytorch_lightning import seed_everything
|
12 |
|
13 |
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
|
14 |
shared_prompt,
|
@@ -87,13 +87,13 @@ def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
|
|
87 |
# if model_ckpt == "LAION-Glyph-10M-Epoch-5":
|
88 |
# model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
|
89 |
if model_ckpt == "LAION-Glyph-10M-Epoch-6":
|
90 |
-
model = load_model_ckpt(model, "laion10M_epoch_6_model_wo_ema.ckpt")
|
91 |
elif model_ckpt == "TextCaps-5K-Epoch-10":
|
92 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_10_model_wo_ema.ckpt")
|
93 |
elif model_ckpt == "TextCaps-5K-Epoch-20":
|
94 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_20_model_wo_ema.ckpt")
|
95 |
elif model_ckpt == "TextCaps-5K-Epoch-40":
|
96 |
-
model = load_model_ckpt(model, "textcaps5K_epoch_40_model_wo_ema.ckpt")
|
97 |
|
98 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
99 |
output_str = f"already change the model checkpoint to {model_ckpt}"
|
@@ -107,20 +107,11 @@ def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
|
|
107 |
return output_str, None, allow_run_generation
|
108 |
|
109 |
SAVE_MEMORY = False
|
110 |
-
shared_seed = 0
|
111 |
-
if shared_seed == -1:
|
112 |
-
shared_seed = random.randint(0, 65535)
|
113 |
-
seed_everything(shared_seed)
|
114 |
-
|
115 |
disable_verbosity()
|
116 |
if SAVE_MEMORY:
|
117 |
enable_sliced_attention()
|
118 |
cfg = OmegaConf.load("config.yaml")
|
119 |
-
model = load_model_from_config(cfg, "laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
|
120 |
-
# model = load_model_from_config(cfg, "model_wo_ema.ckpt", verbose=True)
|
121 |
-
# model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
122 |
-
# model = load_model_from_config(cfg, "model.ckpt", verbose=True)
|
123 |
-
# ddim_sampler = DDIMSampler(model)
|
124 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
125 |
|
126 |
|
|
|
8 |
import time
|
9 |
from PIL import Image
|
10 |
from cldm.hack import disable_verbosity, enable_sliced_attention
|
11 |
+
# from pytorch_lightning import seed_everything
|
12 |
|
13 |
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
|
14 |
shared_prompt,
|
|
|
87 |
# if model_ckpt == "LAION-Glyph-10M-Epoch-5":
|
88 |
# model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
|
89 |
if model_ckpt == "LAION-Glyph-10M-Epoch-6":
|
90 |
+
model = load_model_ckpt(model, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt")
|
91 |
elif model_ckpt == "TextCaps-5K-Epoch-10":
|
92 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt")
|
93 |
elif model_ckpt == "TextCaps-5K-Epoch-20":
|
94 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt")
|
95 |
elif model_ckpt == "TextCaps-5K-Epoch-40":
|
96 |
+
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt")
|
97 |
|
98 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
99 |
output_str = f"already change the model checkpoint to {model_ckpt}"
|
|
|
107 |
return output_str, None, allow_run_generation
|
108 |
|
109 |
SAVE_MEMORY = False
|
|
|
|
|
|
|
|
|
|
|
110 |
disable_verbosity()
|
111 |
if SAVE_MEMORY:
|
112 |
enable_sliced_attention()
|
113 |
cfg = OmegaConf.load("config.yaml")
|
114 |
+
model = load_model_from_config(cfg, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
|
|
|
|
|
|
|
|
|
115 |
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
|
116 |
|
117 |
|
laion10M_epoch_6_model_wo_ema.ckpt → checkpoints/laion10M_epoch_6_model_wo_ema.ckpt
RENAMED
File without changes
|
textcaps5K_epoch_10_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt
RENAMED
File without changes
|
textcaps5K_epoch_20_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt
RENAMED
File without changes
|
textcaps5K_epoch_40_model_wo_ema.ckpt → checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt
RENAMED
File without changes
|
cldm/ddim_hacked.py
CHANGED
@@ -79,15 +79,7 @@ class DDIMSampler(object):
|
|
79 |
):
|
80 |
if conditioning is not None:
|
81 |
if isinstance(conditioning, dict):
|
82 |
-
# ctmp = conditioning[list(conditioning.keys())[0]]
|
83 |
-
# while isinstance(ctmp, list): ctmp = ctmp[0]
|
84 |
-
# cbs = ctmp.shape[0]
|
85 |
-
# if cbs != batch_size:
|
86 |
-
# print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
|
87 |
-
# for ctmp in conditioning.values():
|
88 |
for key, ctmp in conditioning.items():
|
89 |
-
if key == "c_glyph":
|
90 |
-
continue
|
91 |
if ctmp is None:
|
92 |
continue
|
93 |
else:
|
|
|
79 |
):
|
80 |
if conditioning is not None:
|
81 |
if isinstance(conditioning, dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
for key, ctmp in conditioning.items():
|
|
|
|
|
83 |
if ctmp is None:
|
84 |
continue
|
85 |
else:
|
config_ema.yaml
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
3 |
-
target: cldm.cldm.ControlLDM
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
control_key: "hint"
|
13 |
-
image_size: 64
|
14 |
-
channels: 4
|
15 |
-
cond_stage_trainable: false
|
16 |
-
conditioning_key: crossattn
|
17 |
-
monitor: #val/loss_simple_ema
|
18 |
-
scale_factor: 0.18215
|
19 |
-
only_mid_control: False
|
20 |
-
sd_locked: True
|
21 |
-
use_ema: True #TODO: specify
|
22 |
-
|
23 |
-
control_stage_config:
|
24 |
-
target: cldm.cldm.ControlNet
|
25 |
-
params:
|
26 |
-
use_checkpoint: True
|
27 |
-
image_size: 32 # unused
|
28 |
-
in_channels: 4
|
29 |
-
hint_channels: 3
|
30 |
-
model_channels: 320
|
31 |
-
attention_resolutions: [ 4, 2, 1 ]
|
32 |
-
num_res_blocks: 2
|
33 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
34 |
-
num_head_channels: 64 # need to fix for flash-attn
|
35 |
-
use_spatial_transformer: True
|
36 |
-
use_linear_in_transformer: True
|
37 |
-
transformer_depth: 1
|
38 |
-
context_dim: 1024
|
39 |
-
legacy: False
|
40 |
-
|
41 |
-
unet_config:
|
42 |
-
target: cldm.cldm.ControlledUnetModel
|
43 |
-
params:
|
44 |
-
use_checkpoint: True
|
45 |
-
image_size: 32 # unused
|
46 |
-
in_channels: 4
|
47 |
-
out_channels: 4
|
48 |
-
model_channels: 320
|
49 |
-
attention_resolutions: [ 4, 2, 1 ]
|
50 |
-
num_res_blocks: 2
|
51 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
52 |
-
num_head_channels: 64 # need to fix for flash-attn
|
53 |
-
use_spatial_transformer: True
|
54 |
-
use_linear_in_transformer: True
|
55 |
-
transformer_depth: 1
|
56 |
-
context_dim: 1024
|
57 |
-
legacy: False
|
58 |
-
|
59 |
-
first_stage_config:
|
60 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
61 |
-
params:
|
62 |
-
embed_dim: 4
|
63 |
-
monitor: val/rec_loss
|
64 |
-
ddconfig:
|
65 |
-
#attn_type: "vanilla-xformers"
|
66 |
-
double_z: true
|
67 |
-
z_channels: 4
|
68 |
-
resolution: 256
|
69 |
-
in_channels: 3
|
70 |
-
out_ch: 3
|
71 |
-
ch: 128
|
72 |
-
ch_mult:
|
73 |
-
- 1
|
74 |
-
- 2
|
75 |
-
- 4
|
76 |
-
- 4
|
77 |
-
num_res_blocks: 2
|
78 |
-
attn_resolutions: []
|
79 |
-
dropout: 0.0
|
80 |
-
lossconfig:
|
81 |
-
target: torch.nn.Identity
|
82 |
-
|
83 |
-
cond_stage_config:
|
84 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
85 |
-
params:
|
86 |
-
freeze: True
|
87 |
-
layer: "penultimate"
|
88 |
-
# device: "cpu" #TODO: specify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_ema_unlock.yaml
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
3 |
-
target: cldm.cldm.ControlLDM
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
control_key: "hint"
|
13 |
-
image_size: 64
|
14 |
-
channels: 4
|
15 |
-
cond_stage_trainable: false
|
16 |
-
conditioning_key: crossattn
|
17 |
-
monitor: #val/loss_simple_ema
|
18 |
-
scale_factor: 0.18215
|
19 |
-
only_mid_control: False
|
20 |
-
sd_locked: False #True
|
21 |
-
use_ema: True #TODO: specify
|
22 |
-
|
23 |
-
control_stage_config:
|
24 |
-
target: cldm.cldm.ControlNet
|
25 |
-
params:
|
26 |
-
use_checkpoint: True
|
27 |
-
image_size: 32 # unused
|
28 |
-
in_channels: 4
|
29 |
-
hint_channels: 3
|
30 |
-
model_channels: 320
|
31 |
-
attention_resolutions: [ 4, 2, 1 ]
|
32 |
-
num_res_blocks: 2
|
33 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
34 |
-
num_head_channels: 64 # need to fix for flash-attn
|
35 |
-
use_spatial_transformer: True
|
36 |
-
use_linear_in_transformer: True
|
37 |
-
transformer_depth: 1
|
38 |
-
context_dim: 1024
|
39 |
-
legacy: False
|
40 |
-
|
41 |
-
unet_config:
|
42 |
-
target: cldm.cldm.ControlledUnetModel
|
43 |
-
params:
|
44 |
-
use_checkpoint: True
|
45 |
-
image_size: 32 # unused
|
46 |
-
in_channels: 4
|
47 |
-
out_channels: 4
|
48 |
-
model_channels: 320
|
49 |
-
attention_resolutions: [ 4, 2, 1 ]
|
50 |
-
num_res_blocks: 2
|
51 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
52 |
-
num_head_channels: 64 # need to fix for flash-attn
|
53 |
-
use_spatial_transformer: True
|
54 |
-
use_linear_in_transformer: True
|
55 |
-
transformer_depth: 1
|
56 |
-
context_dim: 1024
|
57 |
-
legacy: False
|
58 |
-
|
59 |
-
first_stage_config:
|
60 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
61 |
-
params:
|
62 |
-
embed_dim: 4
|
63 |
-
monitor: val/rec_loss
|
64 |
-
ddconfig:
|
65 |
-
#attn_type: "vanilla-xformers"
|
66 |
-
double_z: true
|
67 |
-
z_channels: 4
|
68 |
-
resolution: 256
|
69 |
-
in_channels: 3
|
70 |
-
out_ch: 3
|
71 |
-
ch: 128
|
72 |
-
ch_mult:
|
73 |
-
- 1
|
74 |
-
- 2
|
75 |
-
- 4
|
76 |
-
- 4
|
77 |
-
num_res_blocks: 2
|
78 |
-
attn_resolutions: []
|
79 |
-
dropout: 0.0
|
80 |
-
lossconfig:
|
81 |
-
target: torch.nn.Identity
|
82 |
-
|
83 |
-
cond_stage_config:
|
84 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
85 |
-
params:
|
86 |
-
freeze: True
|
87 |
-
layer: "penultimate"
|
88 |
-
# device: "cpu" #TODO: specify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/models/ldm_autoencoder.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from contextlib import contextmanager
|
5 |
-
|
6 |
-
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
-
|
8 |
-
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
-
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
-
|
11 |
-
from ldm.util import instantiate_from_config
|
12 |
-
|
13 |
-
|
14 |
-
class VQModel(pl.LightningModule):
|
15 |
-
def __init__(self,
|
16 |
-
ddconfig,
|
17 |
-
lossconfig,
|
18 |
-
n_embed,
|
19 |
-
embed_dim,
|
20 |
-
ckpt_path=None,
|
21 |
-
ignore_keys=[],
|
22 |
-
image_key="image",
|
23 |
-
colorize_nlabels=None,
|
24 |
-
monitor=None,
|
25 |
-
batch_resize_range=None,
|
26 |
-
scheduler_config=None,
|
27 |
-
lr_g_factor=1.0,
|
28 |
-
remap=None,
|
29 |
-
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
-
use_ema=False
|
31 |
-
):
|
32 |
-
super().__init__()
|
33 |
-
self.embed_dim = embed_dim
|
34 |
-
self.n_embed = n_embed
|
35 |
-
self.image_key = image_key
|
36 |
-
self.encoder = Encoder(**ddconfig)
|
37 |
-
self.decoder = Decoder(**ddconfig)
|
38 |
-
self.loss = instantiate_from_config(lossconfig)
|
39 |
-
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
-
remap=remap,
|
41 |
-
sane_index_shape=sane_index_shape)
|
42 |
-
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
-
if colorize_nlabels is not None:
|
45 |
-
assert type(colorize_nlabels)==int
|
46 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
-
if monitor is not None:
|
48 |
-
self.monitor = monitor
|
49 |
-
self.batch_resize_range = batch_resize_range
|
50 |
-
if self.batch_resize_range is not None:
|
51 |
-
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
-
|
53 |
-
self.use_ema = use_ema
|
54 |
-
if self.use_ema:
|
55 |
-
self.model_ema = LitEma(self)
|
56 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
-
|
58 |
-
if ckpt_path is not None:
|
59 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
-
self.scheduler_config = scheduler_config
|
61 |
-
self.lr_g_factor = lr_g_factor
|
62 |
-
|
63 |
-
@contextmanager
|
64 |
-
def ema_scope(self, context=None):
|
65 |
-
if self.use_ema:
|
66 |
-
self.model_ema.store(self.parameters())
|
67 |
-
self.model_ema.copy_to(self)
|
68 |
-
if context is not None:
|
69 |
-
print(f"{context}: Switched to EMA weights")
|
70 |
-
try:
|
71 |
-
yield None
|
72 |
-
finally:
|
73 |
-
if self.use_ema:
|
74 |
-
self.model_ema.restore(self.parameters())
|
75 |
-
if context is not None:
|
76 |
-
print(f"{context}: Restored training weights")
|
77 |
-
|
78 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
-
keys = list(sd.keys())
|
81 |
-
for k in keys:
|
82 |
-
for ik in ignore_keys:
|
83 |
-
if k.startswith(ik):
|
84 |
-
print("Deleting key {} from state_dict.".format(k))
|
85 |
-
del sd[k]
|
86 |
-
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
-
if len(missing) > 0:
|
89 |
-
print(f"Missing Keys: {missing}")
|
90 |
-
print(f"Unexpected Keys: {unexpected}")
|
91 |
-
|
92 |
-
def on_train_batch_end(self, *args, **kwargs):
|
93 |
-
if self.use_ema:
|
94 |
-
self.model_ema(self)
|
95 |
-
|
96 |
-
def encode(self, x):
|
97 |
-
h = self.encoder(x)
|
98 |
-
h = self.quant_conv(h)
|
99 |
-
quant, emb_loss, info = self.quantize(h)
|
100 |
-
return quant, emb_loss, info
|
101 |
-
|
102 |
-
def encode_to_prequant(self, x):
|
103 |
-
h = self.encoder(x)
|
104 |
-
h = self.quant_conv(h)
|
105 |
-
return h
|
106 |
-
|
107 |
-
def decode(self, quant):
|
108 |
-
quant = self.post_quant_conv(quant)
|
109 |
-
dec = self.decoder(quant)
|
110 |
-
return dec
|
111 |
-
|
112 |
-
def decode_code(self, code_b):
|
113 |
-
quant_b = self.quantize.embed_code(code_b)
|
114 |
-
dec = self.decode(quant_b)
|
115 |
-
return dec
|
116 |
-
|
117 |
-
def forward(self, input, return_pred_indices=False):
|
118 |
-
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
-
dec = self.decode(quant)
|
120 |
-
if return_pred_indices:
|
121 |
-
return dec, diff, ind
|
122 |
-
return dec, diff
|
123 |
-
|
124 |
-
def get_input(self, batch, k):
|
125 |
-
x = batch[k]
|
126 |
-
if len(x.shape) == 3:
|
127 |
-
x = x[..., None]
|
128 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
-
if self.batch_resize_range is not None:
|
130 |
-
lower_size = self.batch_resize_range[0]
|
131 |
-
upper_size = self.batch_resize_range[1]
|
132 |
-
if self.global_step <= 4:
|
133 |
-
# do the first few batches with max size to avoid later oom
|
134 |
-
new_resize = upper_size
|
135 |
-
else:
|
136 |
-
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
-
if new_resize != x.shape[2]:
|
138 |
-
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
-
x = x.detach()
|
140 |
-
return x
|
141 |
-
|
142 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
-
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
-
# try not to fool the heuristics
|
145 |
-
x = self.get_input(batch, self.image_key)
|
146 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
-
|
148 |
-
if optimizer_idx == 0:
|
149 |
-
# autoencode
|
150 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
-
last_layer=self.get_last_layer(), split="train",
|
152 |
-
predicted_indices=ind)
|
153 |
-
|
154 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
-
return aeloss
|
156 |
-
|
157 |
-
if optimizer_idx == 1:
|
158 |
-
# discriminator
|
159 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
-
last_layer=self.get_last_layer(), split="train")
|
161 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
-
return discloss
|
163 |
-
|
164 |
-
def validation_step(self, batch, batch_idx):
|
165 |
-
log_dict = self._validation_step(batch, batch_idx)
|
166 |
-
with self.ema_scope():
|
167 |
-
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
-
return log_dict
|
169 |
-
|
170 |
-
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
-
x = self.get_input(batch, self.image_key)
|
172 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
-
self.global_step,
|
175 |
-
last_layer=self.get_last_layer(),
|
176 |
-
split="val"+suffix,
|
177 |
-
predicted_indices=ind
|
178 |
-
)
|
179 |
-
|
180 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
-
self.global_step,
|
182 |
-
last_layer=self.get_last_layer(),
|
183 |
-
split="val"+suffix,
|
184 |
-
predicted_indices=ind
|
185 |
-
)
|
186 |
-
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
-
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
-
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
-
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
-
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
-
self.log_dict(log_dict_ae)
|
194 |
-
self.log_dict(log_dict_disc)
|
195 |
-
return self.log_dict
|
196 |
-
|
197 |
-
def configure_optimizers(self):
|
198 |
-
lr_d = self.learning_rate
|
199 |
-
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
-
print("lr_d", lr_d)
|
201 |
-
print("lr_g", lr_g)
|
202 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
-
list(self.decoder.parameters())+
|
204 |
-
list(self.quantize.parameters())+
|
205 |
-
list(self.quant_conv.parameters())+
|
206 |
-
list(self.post_quant_conv.parameters()),
|
207 |
-
lr=lr_g, betas=(0.5, 0.9))
|
208 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
-
lr=lr_d, betas=(0.5, 0.9))
|
210 |
-
|
211 |
-
if self.scheduler_config is not None:
|
212 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
-
|
214 |
-
print("Setting up LambdaLR scheduler...")
|
215 |
-
scheduler = [
|
216 |
-
{
|
217 |
-
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
-
'interval': 'step',
|
219 |
-
'frequency': 1
|
220 |
-
},
|
221 |
-
{
|
222 |
-
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
-
'interval': 'step',
|
224 |
-
'frequency': 1
|
225 |
-
},
|
226 |
-
]
|
227 |
-
return [opt_ae, opt_disc], scheduler
|
228 |
-
return [opt_ae, opt_disc], []
|
229 |
-
|
230 |
-
def get_last_layer(self):
|
231 |
-
return self.decoder.conv_out.weight
|
232 |
-
|
233 |
-
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
-
log = dict()
|
235 |
-
x = self.get_input(batch, self.image_key)
|
236 |
-
x = x.to(self.device)
|
237 |
-
if only_inputs:
|
238 |
-
log["inputs"] = x
|
239 |
-
return log
|
240 |
-
xrec, _ = self(x)
|
241 |
-
if x.shape[1] > 3:
|
242 |
-
# colorize with random projection
|
243 |
-
assert xrec.shape[1] > 3
|
244 |
-
x = self.to_rgb(x)
|
245 |
-
xrec = self.to_rgb(xrec)
|
246 |
-
log["inputs"] = x
|
247 |
-
log["reconstructions"] = xrec
|
248 |
-
if plot_ema:
|
249 |
-
with self.ema_scope():
|
250 |
-
xrec_ema, _ = self(x)
|
251 |
-
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
-
log["reconstructions_ema"] = xrec_ema
|
253 |
-
return log
|
254 |
-
|
255 |
-
def to_rgb(self, x):
|
256 |
-
assert self.image_key == "segmentation"
|
257 |
-
if not hasattr(self, "colorize"):
|
258 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
-
x = F.conv2d(x, weight=self.colorize)
|
260 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
-
return x
|
262 |
-
|
263 |
-
|
264 |
-
class VQModelInterface(VQModel):
|
265 |
-
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
-
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
-
self.embed_dim = embed_dim
|
268 |
-
|
269 |
-
def encode(self, x):
|
270 |
-
h = self.encoder(x)
|
271 |
-
h = self.quant_conv(h)
|
272 |
-
return h
|
273 |
-
|
274 |
-
def decode(self, h, force_not_quantize=False):
|
275 |
-
# also go through quantization layer
|
276 |
-
if not force_not_quantize:
|
277 |
-
quant, emb_loss, info = self.quantize(h)
|
278 |
-
else:
|
279 |
-
quant = h
|
280 |
-
quant = self.post_quant_conv(quant)
|
281 |
-
dec = self.decoder(quant)
|
282 |
-
return dec
|
283 |
-
|
284 |
-
|
285 |
-
class AutoencoderKL(pl.LightningModule):
|
286 |
-
def __init__(self,
|
287 |
-
ddconfig,
|
288 |
-
lossconfig,
|
289 |
-
embed_dim,
|
290 |
-
ckpt_path=None,
|
291 |
-
ignore_keys=[],
|
292 |
-
image_key="image",
|
293 |
-
colorize_nlabels=None,
|
294 |
-
monitor=None,
|
295 |
-
):
|
296 |
-
super().__init__()
|
297 |
-
self.image_key = image_key
|
298 |
-
self.encoder = Encoder(**ddconfig)
|
299 |
-
self.decoder = Decoder(**ddconfig)
|
300 |
-
self.loss = instantiate_from_config(lossconfig)
|
301 |
-
assert ddconfig["double_z"]
|
302 |
-
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
-
self.embed_dim = embed_dim
|
305 |
-
if colorize_nlabels is not None:
|
306 |
-
assert type(colorize_nlabels)==int
|
307 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
-
if monitor is not None:
|
309 |
-
self.monitor = monitor
|
310 |
-
if ckpt_path is not None:
|
311 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
-
|
313 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
-
keys = list(sd.keys())
|
316 |
-
for k in keys:
|
317 |
-
for ik in ignore_keys:
|
318 |
-
if k.startswith(ik):
|
319 |
-
print("Deleting key {} from state_dict.".format(k))
|
320 |
-
del sd[k]
|
321 |
-
self.load_state_dict(sd, strict=False)
|
322 |
-
print(f"Restored from {path}")
|
323 |
-
|
324 |
-
def encode(self, x):
|
325 |
-
h = self.encoder(x)
|
326 |
-
moments = self.quant_conv(h)
|
327 |
-
posterior = DiagonalGaussianDistribution(moments)
|
328 |
-
return posterior
|
329 |
-
|
330 |
-
def decode(self, z):
|
331 |
-
z = self.post_quant_conv(z)
|
332 |
-
dec = self.decoder(z)
|
333 |
-
return dec
|
334 |
-
|
335 |
-
def forward(self, input, sample_posterior=True):
|
336 |
-
posterior = self.encode(input)
|
337 |
-
if sample_posterior:
|
338 |
-
z = posterior.sample()
|
339 |
-
else:
|
340 |
-
z = posterior.mode()
|
341 |
-
dec = self.decode(z)
|
342 |
-
return dec, posterior
|
343 |
-
|
344 |
-
def get_input(self, batch, k):
|
345 |
-
x = batch[k]
|
346 |
-
if len(x.shape) == 3:
|
347 |
-
x = x[..., None]
|
348 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
-
return x
|
350 |
-
|
351 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
-
inputs = self.get_input(batch, self.image_key)
|
353 |
-
reconstructions, posterior = self(inputs)
|
354 |
-
|
355 |
-
if optimizer_idx == 0:
|
356 |
-
# train encoder+decoder+logvar
|
357 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
-
last_layer=self.get_last_layer(), split="train")
|
359 |
-
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
-
return aeloss
|
362 |
-
|
363 |
-
if optimizer_idx == 1:
|
364 |
-
# train the discriminator
|
365 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
-
last_layer=self.get_last_layer(), split="train")
|
367 |
-
|
368 |
-
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
-
return discloss
|
371 |
-
|
372 |
-
def validation_step(self, batch, batch_idx):
|
373 |
-
inputs = self.get_input(batch, self.image_key)
|
374 |
-
reconstructions, posterior = self(inputs)
|
375 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
-
last_layer=self.get_last_layer(), split="val")
|
377 |
-
|
378 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
-
last_layer=self.get_last_layer(), split="val")
|
380 |
-
|
381 |
-
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
-
self.log_dict(log_dict_ae)
|
383 |
-
self.log_dict(log_dict_disc)
|
384 |
-
return self.log_dict
|
385 |
-
|
386 |
-
def configure_optimizers(self):
|
387 |
-
lr = self.learning_rate
|
388 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
-
list(self.decoder.parameters())+
|
390 |
-
list(self.quant_conv.parameters())+
|
391 |
-
list(self.post_quant_conv.parameters()),
|
392 |
-
lr=lr, betas=(0.5, 0.9))
|
393 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
-
lr=lr, betas=(0.5, 0.9))
|
395 |
-
return [opt_ae, opt_disc], []
|
396 |
-
|
397 |
-
def get_last_layer(self):
|
398 |
-
return self.decoder.conv_out.weight
|
399 |
-
|
400 |
-
@torch.no_grad()
|
401 |
-
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
-
log = dict()
|
403 |
-
x = self.get_input(batch, self.image_key)
|
404 |
-
x = x.to(self.device)
|
405 |
-
if not only_inputs:
|
406 |
-
xrec, posterior = self(x)
|
407 |
-
if x.shape[1] > 3:
|
408 |
-
# colorize with random projection
|
409 |
-
assert xrec.shape[1] > 3
|
410 |
-
x = self.to_rgb(x)
|
411 |
-
xrec = self.to_rgb(xrec)
|
412 |
-
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
-
log["reconstructions"] = xrec
|
414 |
-
log["inputs"] = x
|
415 |
-
return log
|
416 |
-
|
417 |
-
def to_rgb(self, x):
|
418 |
-
assert self.image_key == "segmentation"
|
419 |
-
if not hasattr(self, "colorize"):
|
420 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
-
x = F.conv2d(x, weight=self.colorize)
|
422 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
-
return x
|
424 |
-
|
425 |
-
|
426 |
-
class IdentityFirstStage(torch.nn.Module):
|
427 |
-
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
-
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
-
super().__init__()
|
430 |
-
|
431 |
-
def encode(self, x, *args, **kwargs):
|
432 |
-
return x
|
433 |
-
|
434 |
-
def decode(self, x, *args, **kwargs):
|
435 |
-
return x
|
436 |
-
|
437 |
-
def quantize(self, x, *args, **kwargs):
|
438 |
-
if self.vq_interface:
|
439 |
-
return x, None, [None, None, None]
|
440 |
-
return x
|
441 |
-
|
442 |
-
def forward(self, x, *args, **kwargs):
|
443 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|