GlyphControl / cldm /cldm.py
yyk19's picture
modify the rendertext_tool
73bb868
raw
history blame
No virus
27.4 kB
import einops
import torch
import torch as th
import torch.nn as nn
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.ema import LitEma
from contextlib import contextmanager, nullcontext
from cldm.model import load_state_dict
import numpy as np
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
if control is not None:
h += control.pop()
for i, module in enumerate(self.output_blocks):
if only_mid_control or control is None:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
return self.out(h)
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
class ControlLDM(LatentDiffusion):
def __init__(self,
control_stage_config,
control_key, only_mid_control,
learnable_conscale = False, guess_mode=False,
sd_locked = True, sep_lr = False, decoder_lr = 1.0**-4,
sep_cond_txt = True, exchange_cond_txt = False, concat_all_textemb = False,
*args, **kwargs
):
use_ema = kwargs.pop("use_ema", False)
ckpt_path = kwargs.pop("ckpt_path", None)
reset_ema = kwargs.pop("reset_ema", False)
only_model= kwargs.pop("only_model", False)
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(*args, use_ema=False, **kwargs)
# Glyph ControlNet
self.control_model = instantiate_from_config(control_stage_config)
self.control_key = control_key
self.only_mid_control = only_mid_control
self.learnable_conscale = learnable_conscale
conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)]
if learnable_conscale:
# self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True)
self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True)
else:
self.control_scales = conscale_init #[1.0] * 13
self.optimizer = torch.optim.AdamW
# whether to unlock (fine-tune) the decoder parts of SD U-Net
self.sd_locked = sd_locked
self.sep_lr = sep_lr
self.decoder_lr = decoder_lr
# specify the input text embedding of two branches (SD branch and Glyph ControlNet branch)
self.sep_cond_txt = sep_cond_txt
self.concat_all_textemb = concat_all_textemb
self.exchange_cond_txt = exchange_cond_txt
# ema
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.control_model, init_num_updates= 0)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if not self.sd_locked:
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0)
print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.")
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0)
print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.")
# initialize the model from the checkpoint
if ckpt_path is not None:
ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
self.restarted_from_ckpt = True
if self.use_ema and reset_ema:
print(
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if not self.sd_locked:
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if reset_num_ema_updates:
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
assert self.use_ema
self.model_ema.reset_num_updates()
if not self.sd_locked: # Update
self.model_diffoutblock_ema.reset_num_updates()
self.model_diffout_ema.reset_num_updates()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales
self.model_ema.store(self.control_model.parameters())
self.model_ema.copy_to(self.control_model)
if not self.sd_locked: # Update
self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters())
self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks)
self.model_diffout_ema.store(self.model.diffusion_model.out.parameters())
self.model_diffout_ema.copy_to(self.model.diffusion_model.out)
if context is not None:
print(f"{context}: Switched ControlNet to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.control_model.parameters())
if not self.sd_locked: # Update
self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters())
self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters())
if context is not None:
print(f"{context}: Restored training weights of ControlNet")
@torch.no_grad()
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
if path.endswith("model_states.pt"):
sd = torch.load(path, map_location='cpu')["module"]
else:
# sd = load_state_dict(path, location='cpu') # abandoned
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys_ = list(sd.keys())[:]
for k in keys_:
if k.startswith("module."):
nk = k[7:]
sd[nk] = sd[k]
del sd[k]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys:\n {missing}")
if len(unexpected) > 0:
print(f"\nUnexpected Keys:\n {unexpected}")
if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected:
return sd["model_ema.num_updates"].item()
else:
return 0
@torch.no_grad()
def get_input(self, batch, k, bs=None, *args, **kwargs):
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
control = batch[self.control_key]
if bs is not None:
control = control[:bs]
control = control.to(self.device)
control = einops.rearrange(control, 'b h w c -> b c h w')
control = control.to(memory_format=torch.contiguous_format).float()
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control])
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
assert isinstance(cond, dict)
diffusion_model = self.model.diffusion_model
cond_txt_list = cond["c_crossattn"]
assert len(cond_txt_list) > 0
# cond_txt: input text embedding of the pretrained SD branch
# cond_txt_2: input text embedding of the Glyph ControlNet branch
cond_txt = cond_txt_list[0]
if len(cond_txt_list) == 1:
cond_txt_2 = None
else:
if self.sep_cond_txt:
# use each embedding for each branch separately
cond_txt_2 = cond_txt_list[1]
else:
# concat the embedding for Glyph ControlNet branch
if not self.concat_all_textemb:
cond_txt_2 = torch.cat(cond_txt_list[1:], 1)
else:
cond_txt_2 = torch.cat(cond_txt_list, 1)
if self.exchange_cond_txt:
# exchange the input text embedding of two branches
txt_buffer = cond_txt
cond_txt = cond_txt_2
cond_txt_2 = txt_buffer
if cond['c_concat'] is None:
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
else:
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2)
control = [c * scale for c, scale in zip(control, self.control_scales)]
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
return eps
@torch.no_grad()
def get_unconditional_conditioning(self, N):
return self.get_learned_conditioning([""] * N)
def training_step(self, batch, batch_idx, optimizer_idx=0):
loss = super().training_step(batch, batch_idx, optimizer_idx)
if self.use_scheduler and not self.sd_locked and self.sep_lr:
decoder_lr = self.optimizers().param_groups[1]["lr"]
self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.control_model.parameters())
if self.learnable_conscale:
params += [self.control_scales]
params_wlr = []
decoder_params = None
if not self.sd_locked:
decoder_params = list(self.model.diffusion_model.output_blocks.parameters())
decoder_params += list(self.model.diffusion_model.out.parameters())
if not self.sep_lr:
params.extend(decoder_params)
decoder_params = None
params_wlr.append({"params": params, "lr": lr})
if decoder_params is not None:
params_wlr.append({"params": decoder_params, "lr": self.decoder_lr})
# opt = torch.optim.AdamW(params_wlr)
opt = self.optimizer(params_wlr)
opts = [opt]
# updated
schedulers = []
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler_func = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
schedulers = [
{
'scheduler': LambdaLR(
opt,
lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule]
),
'interval': 'step',
'frequency': 1
}]
return opts, schedulers
def low_vram_shift(self, is_diffusing):
if is_diffusing:
self.model = self.model.cuda()
self.control_model = self.control_model.cuda()
self.first_stage_model = self.first_stage_model.cpu()
self.cond_stage_model = self.cond_stage_model.cpu()
else:
self.model = self.model.cpu()
self.control_model = self.control_model.cpu()
self.first_stage_model = self.first_stage_model.cuda()
self.cond_stage_model = self.cond_stage_model.cuda()
# ema
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.control_model)
if not self.sd_locked: # Update
self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks)
self.model_diffout_ema(self.model.diffusion_model.out)
if self.log_all_grad_norm:
zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:]
zeroconvs.extend(
list(self.control_model.zero_convs.named_parameters())
)
for item in zeroconvs:
self.log(
"zero_convs/{}_norm".format(item[0]),
item[1].cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"zero_convs/{}_max".format(item[0]),
torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
gradnorm_list = []
for param_group in self.trainer.optimizers[0].param_groups:
for p in param_group['params']:
# assert p.requires_grad and p.grad is not None
if p.requires_grad and p.grad is not None:
grad_norm_v = p.grad.cpu().detach().norm().item()
gradnorm_list.append(grad_norm_v)
if len(gradnorm_list):
self.log("all_gradients/grad_norm_mean",
np.mean(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/grad_norm_max",
np.max(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/grad_norm_min",
np.min(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/param_num",
len(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
if self.learnable_conscale:
for i in range(len(self.control_scales)):
self.log(
"control_scale/control_{}".format(i),
self.control_scales[i],
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
del gradnorm_list
del zeroconvs