Spaces:
Running
Running
# Copyright (c) 2022 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, ConvTranspose1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
import numpy as np | |
from .activations import Snake,SnakeBeta | |
from .alias_free_torch import * | |
import os | |
from omegaconf import OmegaConf | |
LRELU_SLOPE = 0.1 | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
class AMPBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): | |
super(AMPBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
self.convs2.apply(init_weights) | |
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers | |
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing | |
self.activations = nn.ModuleList([ | |
Activation1d( | |
activation=Snake(channels, alpha_logscale=h.snake_logscale)) | |
for _ in range(self.num_layers) | |
]) | |
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing | |
self.activations = nn.ModuleList([ | |
Activation1d( | |
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale)) | |
for _ in range(self.num_layers) | |
]) | |
else: | |
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | |
def forward(self, x): | |
acts1, acts2 = self.activations[::2], self.activations[1::2] | |
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): | |
xt = a1(x) | |
xt = c1(xt) | |
xt = a2(xt) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class AMPBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): | |
super(AMPBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
]) | |
self.convs.apply(init_weights) | |
self.num_layers = len(self.convs) # total number of conv layers | |
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing | |
self.activations = nn.ModuleList([ | |
Activation1d( | |
activation=Snake(channels, alpha_logscale=h.snake_logscale)) | |
for _ in range(self.num_layers) | |
]) | |
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing | |
self.activations = nn.ModuleList([ | |
Activation1d( | |
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale)) | |
for _ in range(self.num_layers) | |
]) | |
else: | |
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | |
def forward(self, x): | |
for c, a in zip (self.convs, self.activations): | |
xt = a(x) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class BigVGAN(torch.nn.Module): | |
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks. | |
def __init__(self, h): | |
super(BigVGAN, self).__init__() | |
self.h = h | |
self.num_kernels = len(h.resblock_kernel_sizes) | |
self.num_upsamples = len(h.upsample_rates) | |
# pre conv | |
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) | |
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default | |
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 | |
# transposed conv-based upsamplers. does not apply anti-aliasing | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
self.ups.append(nn.ModuleList([ | |
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), | |
h.upsample_initial_channel // (2 ** (i + 1)), | |
k, u, padding=(k - u) // 2)) | |
])) | |
# residual blocks using anti-aliased multi-periodicity composition modules (AMP) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = h.upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) | |
# post conv | |
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing | |
activation_post = Snake(ch, alpha_logscale=h.snake_logscale) | |
self.activation_post = Activation1d(activation=activation_post) | |
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing | |
activation_post = SnakeBeta(ch, alpha_logscale=h.snake_logscale) | |
self.activation_post = Activation1d(activation=activation_post) | |
else: | |
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
# weight initialization | |
for i in range(len(self.ups)): | |
self.ups[i].apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x): | |
# pre conv | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
# upsampling | |
for i_up in range(len(self.ups[i])): | |
x = self.ups[i][i_up](x) | |
# AMP blocks | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
# post conv | |
x = self.activation_post(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for l in self.ups: | |
for l_i in l: | |
remove_weight_norm(l_i) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.d_mult = h.discriminator_channel_mult | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, h): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.mpd_reshapes = h.mpd_reshapes | |
print("mpd_reshapes: {}".format(self.mpd_reshapes)) | |
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes] | |
self.discriminators = nn.ModuleList(discriminators) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorR(nn.Module): | |
def __init__(self, cfg, resolution): | |
super().__init__() | |
self.resolution = resolution | |
assert len(self.resolution) == 3, \ | |
"MRD layer requires list with len=3, got {}".format(self.resolution) | |
self.lrelu_slope = LRELU_SLOPE | |
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm | |
if hasattr(cfg, "mrd_use_spectral_norm"): | |
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm)) | |
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm | |
self.d_mult = cfg.discriminator_channel_mult | |
if hasattr(cfg, "mrd_channel_mult"): | |
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult)) | |
self.d_mult = cfg.mrd_channel_mult | |
self.convs = nn.ModuleList([ | |
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))), | |
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))), | |
]) | |
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))) | |
def forward(self, x): | |
fmap = [] | |
x = self.spectrogram(x) | |
x = x.unsqueeze(1) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, self.lrelu_slope) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def spectrogram(self, x): | |
n_fft, hop_length, win_length = self.resolution | |
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect') | |
x = x.squeeze(1) | |
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True) | |
x = torch.view_as_real(x) # [B, F, TT, 2] | |
mag = torch.norm(x, p=2, dim =-1) #[B, F, TT] | |
return mag | |
class MultiResolutionDiscriminator(nn.Module): | |
def __init__(self, cfg, debug=False): | |
super().__init__() | |
self.resolutions = cfg.resolutions | |
assert len(self.resolutions) == 3,\ | |
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\ | |
format(self.resolutions) | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions] | |
) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(x=y) | |
y_d_g, fmap_g = d(x=y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss*2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1-dr)**2) | |
g_loss = torch.mean(dg**2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1-dg)**2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
class VocoderBigVGAN(object): | |
def __init__(self, ckpt_vocoder,device='cuda'): | |
vocoder_sd = torch.load(os.path.join(ckpt_vocoder,'best_netG.pt'), map_location='cpu') | |
vocoder_args = OmegaConf.load(os.path.join(ckpt_vocoder,'args.yml')) | |
self.generator = BigVGAN(vocoder_args) | |
self.generator.load_state_dict(vocoder_sd['generator']) | |
self.generator.eval() | |
self.device = device | |
self.generator.to(self.device) | |
def vocode(self, spec): | |
with torch.no_grad(): | |
if isinstance(spec,np.ndarray): | |
spec = torch.from_numpy(spec).unsqueeze(0) | |
spec = spec.to(dtype=torch.float32,device=self.device) | |
return self.generator(spec).squeeze().cpu().numpy() | |
def __call__(self, wav): | |
return self.vocode(wav) | |