Spaces:
Sleeping
Sleeping
import functools | |
import torch.nn as nn | |
class ActNorm(nn.Module): | |
def __init__(self, num_features, logdet=False, affine=True, | |
allow_reverse_init=False): | |
assert affine | |
super().__init__() | |
self.logdet = logdet | |
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) | |
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) | |
self.allow_reverse_init = allow_reverse_init | |
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
def initialize(self, input): | |
with torch.no_grad(): | |
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) | |
mean = ( | |
flatten.mean(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
std = ( | |
flatten.std(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
self.loc.data.copy_(-mean) | |
self.scale.data.copy_(1 / (std + 1e-6)) | |
def forward(self, input, reverse=False): | |
if reverse: | |
return self.reverse(input) | |
if len(input.shape) == 2: | |
input = input[:, :, None, None] | |
squeeze = True | |
else: | |
squeeze = False | |
_, _, height, width = input.shape | |
if self.training and self.initialized.item() == 0: | |
self.initialize(input) | |
self.initialized.fill_(1) | |
h = self.scale * (input + self.loc) | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
if self.logdet: | |
log_abs = torch.log(torch.abs(self.scale)) | |
logdet = height * width * torch.sum(log_abs) | |
logdet = logdet * torch.ones(input.shape[0]).to(input) | |
return h, logdet | |
return h | |
def reverse(self, output): | |
if self.training and self.initialized.item() == 0: | |
if not self.allow_reverse_init: | |
raise RuntimeError( | |
"Initializing ActNorm in reverse direction is " | |
"disabled by default. Use allow_reverse_init=True to enable." | |
) | |
else: | |
self.initialize(output) | |
self.initialized.fill_(1) | |
if len(output.shape) == 2: | |
output = output[:, :, None, None] | |
squeeze = True | |
else: | |
squeeze = False | |
h = output / self.scale - self.loc | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
return h | |
def weights_init(m): | |
classname = m.__class__.__name__ | |
if classname.find('Conv') != -1: | |
nn.init.normal_(m.weight.data, 0.0, 0.02) | |
elif classname.find('BatchNorm') != -1: | |
nn.init.normal_(m.weight.data, 1.0, 0.02) | |
nn.init.constant_(m.bias.data, 0) | |
class NLayerDiscriminator(nn.Module): | |
"""Defines a PatchGAN discriminator as in Pix2Pix | |
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
""" | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
"""Construct a PatchGAN discriminator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
ndf (int) -- the number of filters in the last conv layer | |
n_layers (int) -- the number of conv layers in the discriminator | |
norm_layer -- normalization layer | |
""" | |
super(NLayerDiscriminator, self).__init__() | |
if not use_actnorm: | |
norm_layer = nn.BatchNorm2d | |
else: | |
norm_layer = ActNorm | |
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters | |
use_bias = norm_layer.func != nn.BatchNorm2d | |
else: | |
use_bias = norm_layer != nn.BatchNorm2d | |
kw = 4 | |
padw = 1 | |
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
nf_mult = 1 | |
nf_mult_prev = 1 | |
for n in range(1, n_layers): # gradually increase the number of filters | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n, 8) | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n_layers, 8) | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
# output 1 channel prediction map | |
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] | |
self.main = nn.Sequential(*sequence) | |
def forward(self, input): | |
"""Standard forward.""" | |
return self.main(input) | |
class NLayerDiscriminator1dFeats(NLayerDiscriminator): | |
"""Defines a PatchGAN discriminator as in Pix2Pix | |
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
""" | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
"""Construct a PatchGAN discriminator | |
Parameters: | |
input_nc (int) -- the number of channels in input feats | |
ndf (int) -- the number of filters in the last conv layer | |
n_layers (int) -- the number of conv layers in the discriminator | |
norm_layer -- normalization layer | |
""" | |
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm) | |
if not use_actnorm: | |
norm_layer = nn.BatchNorm1d | |
else: | |
norm_layer = ActNorm | |
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters | |
use_bias = norm_layer.func != nn.BatchNorm1d | |
else: | |
use_bias = norm_layer != nn.BatchNorm1d | |
kw = 4 | |
padw = 1 | |
sequence = [nn.Conv1d(input_nc, input_nc//2, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
nf_mult = input_nc//2 | |
nf_mult_prev = 1 | |
for n in range(1, n_layers): # gradually decrease the number of filters | |
nf_mult_prev = nf_mult | |
nf_mult = max(nf_mult_prev // (2 ** n), 8) | |
sequence += [ | |
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
norm_layer(nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = max(nf_mult_prev // (2 ** n), 8) | |
sequence += [ | |
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
norm_layer(nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = max(nf_mult_prev // (2 ** n), 8) | |
sequence += [ | |
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
norm_layer(nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
# output 1 channel prediction map | |
sequence += [nn.Conv1d(nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] | |
self.main = nn.Sequential(*sequence) | |
class NLayerDiscriminator1dSpecs(NLayerDiscriminator): | |
"""Defines a PatchGAN discriminator as in Pix2Pix | |
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
""" | |
def __init__(self, input_nc=80, ndf=64, n_layers=3, use_actnorm=False): | |
"""Construct a PatchGAN discriminator | |
Parameters: | |
input_nc (int) -- the number of channels in input specs | |
ndf (int) -- the number of filters in the last conv layer | |
n_layers (int) -- the number of conv layers in the discriminator | |
norm_layer -- normalization layer | |
""" | |
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm) | |
if not use_actnorm: | |
norm_layer = nn.BatchNorm1d | |
else: | |
norm_layer = ActNorm | |
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters | |
use_bias = norm_layer.func != nn.BatchNorm1d | |
else: | |
use_bias = norm_layer != nn.BatchNorm1d | |
kw = 4 | |
padw = 1 | |
sequence = [nn.Conv1d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
nf_mult = 1 | |
nf_mult_prev = 1 | |
for n in range(1, n_layers): # gradually decrease the number of filters | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n, 8) | |
sequence += [ | |
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n_layers, 8) | |
sequence += [ | |
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
# output 1 channel prediction map | |
sequence += [nn.Conv1d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] | |
self.main = nn.Sequential(*sequence) | |
def forward(self, input): | |
"""Standard forward.""" | |
# (B, C, L) | |
input = input.squeeze(1) | |
input = self.main(input) | |
return input | |
if __name__ == '__main__': | |
import torch | |
## FEATURES | |
disc_in_channels = 2048 | |
disc_num_layers = 2 | |
use_actnorm = False | |
disc_ndf = 64 | |
discriminator = NLayerDiscriminator1dFeats(input_nc=disc_in_channels, n_layers=disc_num_layers, | |
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) | |
inputs = torch.rand((6, 2048, 212)) | |
outputs = discriminator(inputs) | |
print(outputs.shape) | |
## AUDIO | |
disc_in_channels = 1 | |
disc_num_layers = 3 | |
use_actnorm = False | |
disc_ndf = 64 | |
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, | |
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) | |
inputs = torch.rand((6, 1, 80, 848)) | |
outputs = discriminator(inputs) | |
print(outputs.shape) | |
## IMAGE | |
disc_in_channels = 3 | |
disc_num_layers = 3 | |
use_actnorm = False | |
disc_ndf = 64 | |
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, | |
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) | |
inputs = torch.rand((6, 3, 256, 256)) | |
outputs = discriminator(inputs) | |
print(outputs.shape) | |