Spaces:
Running
on
Zero
Running
on
Zero
Update ldm/modules/encoders/modules.py
Browse files- ldm/modules/encoders/modules.py +582 -582
ldm/modules/encoders/modules.py
CHANGED
@@ -1,582 +1,582 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from functools import partial
|
4 |
-
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
5 |
-
from torch.utils.checkpoint import checkpoint
|
6 |
-
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer
|
7 |
-
from importlib_resources import files
|
8 |
-
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
9 |
-
from ldm.modules.encoders.CLAP.clap import TextEncoder
|
10 |
-
import copy
|
11 |
-
from ldm.util import default, count_params
|
12 |
-
import pytorch_lightning as pl
|
13 |
-
|
14 |
-
class AbstractEncoder(pl.LightningModule):
|
15 |
-
def __init__(self):
|
16 |
-
super().__init__()
|
17 |
-
|
18 |
-
def encode(self, *args, **kwargs):
|
19 |
-
raise NotImplementedError
|
20 |
-
|
21 |
-
|
22 |
-
class ClassEmbedder(nn.Module):
|
23 |
-
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
24 |
-
super().__init__()
|
25 |
-
self.key = key
|
26 |
-
self.embedding = nn.Embedding(n_classes, embed_dim)
|
27 |
-
|
28 |
-
def forward(self, batch, key=None):
|
29 |
-
if key is None:
|
30 |
-
key = self.key
|
31 |
-
# this is for use in crossattn
|
32 |
-
c = batch[key][:, None]# (bsz,1)
|
33 |
-
c = self.embedding(c)
|
34 |
-
return c
|
35 |
-
|
36 |
-
|
37 |
-
class TransformerEmbedder(AbstractEncoder):
|
38 |
-
"""Some transformer encoder layers"""
|
39 |
-
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
40 |
-
super().__init__()
|
41 |
-
self.device = device
|
42 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
43 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
44 |
-
|
45 |
-
def forward(self, tokens):
|
46 |
-
tokens = tokens.to(self.device) # meh
|
47 |
-
z = self.transformer(tokens, return_embeddings=True)
|
48 |
-
return z
|
49 |
-
|
50 |
-
def encode(self, x):
|
51 |
-
return self(x)
|
52 |
-
|
53 |
-
|
54 |
-
class BERTTokenizer(AbstractEncoder):
|
55 |
-
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
56 |
-
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
57 |
-
super().__init__()
|
58 |
-
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
59 |
-
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
60 |
-
self.device = device
|
61 |
-
self.vq_interface = vq_interface
|
62 |
-
self.max_length = max_length
|
63 |
-
|
64 |
-
def forward(self, text):
|
65 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
66 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
67 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
68 |
-
return tokens
|
69 |
-
|
70 |
-
@torch.no_grad()
|
71 |
-
def encode(self, text):
|
72 |
-
tokens = self(text)
|
73 |
-
if not self.vq_interface:
|
74 |
-
return tokens
|
75 |
-
return None, None, [None, None, tokens]
|
76 |
-
|
77 |
-
def decode(self, text):
|
78 |
-
return text
|
79 |
-
|
80 |
-
|
81 |
-
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper
|
82 |
-
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
83 |
-
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
84 |
-
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
85 |
-
super().__init__()
|
86 |
-
self.use_tknz_fn = use_tokenizer
|
87 |
-
if self.use_tknz_fn:
|
88 |
-
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
89 |
-
self.device = device
|
90 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
91 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
92 |
-
emb_dropout=embedding_dropout)
|
93 |
-
|
94 |
-
def forward(self, text):
|
95 |
-
if self.use_tknz_fn:
|
96 |
-
tokens = self.tknz_fn(text)#.to(self.device)
|
97 |
-
else:
|
98 |
-
tokens = text
|
99 |
-
z = self.transformer(tokens, return_embeddings=True)
|
100 |
-
return z
|
101 |
-
|
102 |
-
def encode(self, text):
|
103 |
-
# output of length 77
|
104 |
-
return self(text)
|
105 |
-
|
106 |
-
|
107 |
-
class SpatialRescaler(nn.Module):
|
108 |
-
def __init__(self,
|
109 |
-
n_stages=1,
|
110 |
-
method='bilinear',
|
111 |
-
multiplier=0.5,
|
112 |
-
in_channels=3,
|
113 |
-
out_channels=None,
|
114 |
-
bias=False):
|
115 |
-
super().__init__()
|
116 |
-
self.n_stages = n_stages
|
117 |
-
assert self.n_stages >= 0
|
118 |
-
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
119 |
-
self.multiplier = multiplier
|
120 |
-
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
121 |
-
self.remap_output = out_channels is not None
|
122 |
-
if self.remap_output:
|
123 |
-
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
124 |
-
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
125 |
-
|
126 |
-
def forward(self,x):
|
127 |
-
for stage in range(self.n_stages):
|
128 |
-
x = self.interpolator(x, scale_factor=self.multiplier)
|
129 |
-
|
130 |
-
|
131 |
-
if self.remap_output:
|
132 |
-
x = self.channel_mapper(x)
|
133 |
-
return x
|
134 |
-
|
135 |
-
def encode(self, x):
|
136 |
-
return self(x)
|
137 |
-
|
138 |
-
def disabled_train(self, mode=True):
|
139 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
140 |
-
does not change anymore."""
|
141 |
-
return self
|
142 |
-
|
143 |
-
class FrozenT5Embedder(AbstractEncoder):
|
144 |
-
"""Uses the T5 transformer encoder for text"""
|
145 |
-
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
146 |
-
super().__init__()
|
147 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
148 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
149 |
-
self.device = device
|
150 |
-
self.max_length = max_length # TODO: typical value?
|
151 |
-
if freeze:
|
152 |
-
self.freeze()
|
153 |
-
|
154 |
-
def freeze(self):
|
155 |
-
self.transformer = self.transformer.eval()
|
156 |
-
#self.train = disabled_train
|
157 |
-
for param in self.parameters():
|
158 |
-
param.requires_grad = False
|
159 |
-
|
160 |
-
def forward(self, text):
|
161 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
162 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
163 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
164 |
-
outputs = self.transformer(input_ids=tokens)
|
165 |
-
|
166 |
-
z = outputs.last_hidden_state
|
167 |
-
return z
|
168 |
-
|
169 |
-
def encode(self, text):
|
170 |
-
return self(text)
|
171 |
-
|
172 |
-
class FrozenFLANEmbedder(AbstractEncoder):
|
173 |
-
"""Uses the T5 transformer encoder for text"""
|
174 |
-
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
175 |
-
super().__init__()
|
176 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
177 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
178 |
-
self.device = device
|
179 |
-
self.max_length = max_length # TODO: typical value?
|
180 |
-
if freeze:
|
181 |
-
self.freeze()
|
182 |
-
|
183 |
-
def freeze(self):
|
184 |
-
self.transformer = self.transformer.eval()
|
185 |
-
#self.train = disabled_train
|
186 |
-
for param in self.parameters():
|
187 |
-
param.requires_grad = False
|
188 |
-
|
189 |
-
def forward(self, text):
|
190 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
191 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
192 |
-
tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch
|
193 |
-
outputs = self.transformer(input_ids=tokens)
|
194 |
-
|
195 |
-
z = outputs.last_hidden_state
|
196 |
-
return z
|
197 |
-
|
198 |
-
def encode(self, text):
|
199 |
-
return self(text)
|
200 |
-
|
201 |
-
class FrozenCLAPEmbedder(AbstractEncoder):
|
202 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
203 |
-
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
204 |
-
super().__init__()
|
205 |
-
|
206 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
207 |
-
match_params = dict()
|
208 |
-
for key in list(model_state_dict.keys()):
|
209 |
-
if 'caption_encoder' in key:
|
210 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
211 |
-
|
212 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
213 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
214 |
-
|
215 |
-
# To device
|
216 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
217 |
-
self.caption_encoder = TextEncoder(
|
218 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
219 |
-
)
|
220 |
-
|
221 |
-
self.max_length = max_length
|
222 |
-
self.device = device
|
223 |
-
if freeze: self.freeze()
|
224 |
-
|
225 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
226 |
-
|
227 |
-
def freeze(self):# only freeze
|
228 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
229 |
-
for param in self.caption_encoder.base.parameters():
|
230 |
-
param.requires_grad = False
|
231 |
-
|
232 |
-
|
233 |
-
def encode(self, text):
|
234 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
235 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
236 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
237 |
-
|
238 |
-
outputs = self.caption_encoder.base(input_ids=tokens)
|
239 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
240 |
-
return z
|
241 |
-
|
242 |
-
class FrozenLAIONCLAPEmbedder(AbstractEncoder):
|
243 |
-
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
244 |
-
def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32
|
245 |
-
super().__init__()
|
246 |
-
# To device
|
247 |
-
from transformers import RobertaTokenizer
|
248 |
-
from ldm.modules.encoders.open_clap import create_model
|
249 |
-
self.sentence = sentence
|
250 |
-
|
251 |
-
model, model_cfg = create_model(
|
252 |
-
'HTSAT-tiny',
|
253 |
-
'roberta',
|
254 |
-
weights_path,
|
255 |
-
enable_fusion=True,
|
256 |
-
fusion_type='aff_2d'
|
257 |
-
)
|
258 |
-
|
259 |
-
del model.audio_branch, model.audio_transform, model.audio_projection
|
260 |
-
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
261 |
-
self.model = model
|
262 |
-
|
263 |
-
self.max_length = max_length
|
264 |
-
self.device = device
|
265 |
-
self.to(self.device)
|
266 |
-
if freeze: self.freeze()
|
267 |
-
|
268 |
-
param_num = sum(p.numel() for p in model.parameters())
|
269 |
-
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.')
|
270 |
-
|
271 |
-
def to(self,device):
|
272 |
-
self.model.to(device=device)
|
273 |
-
self.device=device
|
274 |
-
|
275 |
-
def freeze(self):
|
276 |
-
self.model = self.model.eval()
|
277 |
-
for param in self.model.parameters():
|
278 |
-
param.requires_grad = False
|
279 |
-
|
280 |
-
def encode(self, text):
|
281 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device)
|
282 |
-
if self.sentence:
|
283 |
-
z = self.model.get_text_embedding(batch_encoding).unsqueeze(1)
|
284 |
-
else:
|
285 |
-
# text_branch is roberta
|
286 |
-
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device))
|
287 |
-
z = self.model.text_projection(outputs.last_hidden_state)
|
288 |
-
|
289 |
-
return z
|
290 |
-
|
291 |
-
class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder):
|
292 |
-
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
293 |
-
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
294 |
-
super().__init__()
|
295 |
-
# To device
|
296 |
-
from transformers import RobertaTokenizer
|
297 |
-
from ldm.modules.encoders.open_clap import create_model
|
298 |
-
|
299 |
-
|
300 |
-
model, model_cfg = create_model(
|
301 |
-
'HTSAT-tiny',
|
302 |
-
'roberta',
|
303 |
-
weights_path,
|
304 |
-
enable_fusion=True,
|
305 |
-
fusion_type='aff_2d'
|
306 |
-
)
|
307 |
-
|
308 |
-
del model.audio_branch, model.audio_transform, model.audio_projection
|
309 |
-
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
|
310 |
-
self.model = model
|
311 |
-
|
312 |
-
self.max_length = max_length
|
313 |
-
self.device = device
|
314 |
-
if freeze: self.freeze()
|
315 |
-
|
316 |
-
param_num = sum(p.numel() for p in model.parameters())
|
317 |
-
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.')
|
318 |
-
|
319 |
-
def freeze(self):
|
320 |
-
self.model = self.model.eval()
|
321 |
-
for param in self.model.parameters():
|
322 |
-
param.requires_grad = False
|
323 |
-
|
324 |
-
def tokenizer(self, text):
|
325 |
-
result = self.tokenize(
|
326 |
-
text,
|
327 |
-
padding="max_length",
|
328 |
-
truncation=True,
|
329 |
-
max_length=512,
|
330 |
-
return_tensors="pt",
|
331 |
-
)
|
332 |
-
return result
|
333 |
-
|
334 |
-
def encode(self, text):
|
335 |
-
with torch.no_grad():
|
336 |
-
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
337 |
-
text_data = self.tokenizer(text)# input_ids shape:(b,512)
|
338 |
-
embed = self.model.get_text_embedding(text_data)
|
339 |
-
embed = embed.unsqueeze(1)# (b,1,512)
|
340 |
-
return embed
|
341 |
-
|
342 |
-
class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上|
|
343 |
-
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
344 |
-
def __init__(self, weights_path, freeze=True, device="cuda"):
|
345 |
-
super().__init__()
|
346 |
-
|
347 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
348 |
-
match_params = dict()
|
349 |
-
for key in list(model_state_dict.keys()):
|
350 |
-
if 'caption_encoder' in key:
|
351 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
352 |
-
|
353 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
354 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
355 |
-
|
356 |
-
# To device
|
357 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
358 |
-
self.caption_encoder = TextEncoder(
|
359 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
360 |
-
).to(device)
|
361 |
-
self.max_objs = 10
|
362 |
-
self.max_length = args.text_len
|
363 |
-
self.device = device
|
364 |
-
self.order_to_label = self.build_order_dict()
|
365 |
-
if freeze: self.freeze()
|
366 |
-
|
367 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
368 |
-
|
369 |
-
def freeze(self):
|
370 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
371 |
-
for param in self.caption_encoder.base.parameters():
|
372 |
-
param.requires_grad = False
|
373 |
-
|
374 |
-
def build_order_dict(self):
|
375 |
-
order2label = {}
|
376 |
-
num_orders = 10
|
377 |
-
time_stamps = ['start','mid','end']
|
378 |
-
time_num = len(time_stamps)
|
379 |
-
for i in range(num_orders):
|
380 |
-
for j,time_stamp in enumerate(time_stamps):
|
381 |
-
order2label[f'order {i} {time_stamp}'] = i * time_num + j
|
382 |
-
order2label['all'] = num_orders*len(time_stamps)
|
383 |
-
order2label['unknown'] = num_orders*len(time_stamps) + 1
|
384 |
-
return order2label
|
385 |
-
|
386 |
-
def encode(self, text):
|
387 |
-
obj_list,orders_list = [],[]
|
388 |
-
for raw in text:
|
389 |
-
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
390 |
-
objs = []
|
391 |
-
orders = []
|
392 |
-
for split in splits:# <obj& order>
|
393 |
-
split = split[1:-1]
|
394 |
-
obj,order = split.split('&')
|
395 |
-
objs.append(obj.strip())
|
396 |
-
try:
|
397 |
-
orders.append(self.order_to_label[order.strip()])
|
398 |
-
except:
|
399 |
-
print(order.strip(),raw)
|
400 |
-
assert len(objs) == len(orders)
|
401 |
-
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
402 |
-
orders_list.append(orders)
|
403 |
-
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
404 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
405 |
-
tokens = batch_encoding["input_ids"]
|
406 |
-
|
407 |
-
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
408 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
409 |
-
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list}
|
410 |
-
|
411 |
-
class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。
|
412 |
-
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
413 |
-
def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32
|
414 |
-
super().__init__()
|
415 |
-
|
416 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
417 |
-
match_params = dict()
|
418 |
-
for key in list(model_state_dict.keys()):
|
419 |
-
if 'caption_encoder' in key:
|
420 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
421 |
-
|
422 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
423 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
424 |
-
|
425 |
-
# To device
|
426 |
-
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
427 |
-
self.caption_encoder = TextEncoder(
|
428 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
429 |
-
).to(device)
|
430 |
-
self.max_objs = 10
|
431 |
-
self.max_length = args.text_len
|
432 |
-
self.device = device
|
433 |
-
self.order_to_label = self.build_order_dict()
|
434 |
-
if freeze: self.freeze()
|
435 |
-
|
436 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
437 |
-
|
438 |
-
def freeze(self):
|
439 |
-
self.caption_encoder.base = self.caption_encoder.base.eval()
|
440 |
-
for param in self.caption_encoder.base.parameters():
|
441 |
-
param.requires_grad = False
|
442 |
-
|
443 |
-
def build_order_dict(self):
|
444 |
-
order2label = {}
|
445 |
-
time_stamps = ['all','start','mid','end']
|
446 |
-
for i,time_stamp in enumerate(time_stamps):
|
447 |
-
order2label[time_stamp] = i
|
448 |
-
return order2label
|
449 |
-
|
450 |
-
def encode(self, text):
|
451 |
-
obj_list,orders_list = [],[]
|
452 |
-
for raw in text:
|
453 |
-
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
454 |
-
objs = []
|
455 |
-
orders = []
|
456 |
-
for split in splits:# <obj& order>
|
457 |
-
split = split[1:-1]
|
458 |
-
obj,order = split.split('&')
|
459 |
-
objs.append(obj.strip())
|
460 |
-
try:
|
461 |
-
orders.append(self.order_to_label[order.strip()])
|
462 |
-
except:
|
463 |
-
print(order.strip(),raw)
|
464 |
-
assert len(objs) == len(orders)
|
465 |
-
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
466 |
-
orders_list.append(orders)
|
467 |
-
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
468 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
469 |
-
tokens = batch_encoding["input_ids"]
|
470 |
-
attn_mask = batch_encoding["attention_mask"]
|
471 |
-
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
472 |
-
z = outputs.last_hidden_state
|
473 |
-
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask}
|
474 |
-
|
475 |
-
class FrozenCLAPT5Embedder(AbstractEncoder):
|
476 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
477 |
-
def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
478 |
-
super().__init__()
|
479 |
-
|
480 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
481 |
-
match_params = dict()
|
482 |
-
for key in list(model_state_dict.keys()):
|
483 |
-
if 'caption_encoder' in key:
|
484 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
485 |
-
|
486 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
487 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
488 |
-
|
489 |
-
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
490 |
-
self.caption_encoder = TextEncoder(
|
491 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
492 |
-
)
|
493 |
-
|
494 |
-
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
495 |
-
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
496 |
-
|
497 |
-
self.max_length = max_length
|
498 |
-
self.to(device=device)
|
499 |
-
if freeze: self.freeze()
|
500 |
-
|
501 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
502 |
-
|
503 |
-
def freeze(self):
|
504 |
-
self.caption_encoder = self.caption_encoder.eval()
|
505 |
-
for param in self.caption_encoder.parameters():
|
506 |
-
param.requires_grad = False
|
507 |
-
|
508 |
-
def to(self,device):
|
509 |
-
self.t5_transformer.to(device)
|
510 |
-
self.caption_encoder.to(device)
|
511 |
-
self.device = device
|
512 |
-
|
513 |
-
def encode(self, text):
|
514 |
-
ori_caption = text['ori_caption']
|
515 |
-
struct_caption = text['struct_caption']
|
516 |
-
# print(ori_caption,struct_caption)
|
517 |
-
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
518 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
519 |
-
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
520 |
-
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
521 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
522 |
-
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
523 |
-
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
524 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
525 |
-
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
526 |
-
return torch.concat([z,z2],dim=1)
|
527 |
-
|
528 |
-
|
529 |
-
class FrozenCLAPFLANEmbedder(AbstractEncoder):
|
530 |
-
"""Uses the CLAP transformer encoder for text from microsoft"""
|
531 |
-
def __init__(self, weights_path,t5version="
|
532 |
-
super().__init__()
|
533 |
-
|
534 |
-
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
535 |
-
match_params = dict()
|
536 |
-
for key in list(model_state_dict.keys()):
|
537 |
-
if 'caption_encoder' in key:
|
538 |
-
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
539 |
-
|
540 |
-
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text()
|
541 |
-
args = read_config_as_args(config_as_str, is_config_str=True)
|
542 |
-
|
543 |
-
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
544 |
-
self.caption_encoder = TextEncoder(
|
545 |
-
args.d_proj, args.text_model, args.transformer_embed_dim
|
546 |
-
)
|
547 |
-
|
548 |
-
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
549 |
-
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
550 |
-
|
551 |
-
self.max_length = max_length
|
552 |
-
# self.to(device=device)
|
553 |
-
if freeze: self.freeze()
|
554 |
-
|
555 |
-
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
556 |
-
|
557 |
-
def freeze(self):
|
558 |
-
self.caption_encoder = self.caption_encoder.eval()
|
559 |
-
for param in self.caption_encoder.parameters():
|
560 |
-
param.requires_grad = False
|
561 |
-
|
562 |
-
def to(self,device):
|
563 |
-
self.t5_transformer.to(device)
|
564 |
-
self.caption_encoder.to(device)
|
565 |
-
self.device = device
|
566 |
-
|
567 |
-
def encode(self, text):
|
568 |
-
ori_caption = text['ori_caption']
|
569 |
-
struct_caption = text['struct_caption']
|
570 |
-
# print(ori_caption,struct_caption)
|
571 |
-
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
572 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
573 |
-
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
574 |
-
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
575 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
576 |
-
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
577 |
-
# if self.caption_encoder.device != ori_tokens.device:
|
578 |
-
# self.to(self.device)
|
579 |
-
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
580 |
-
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
581 |
-
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
582 |
-
return torch.concat([z,z2],dim=1)
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
5 |
+
from torch.utils.checkpoint import checkpoint
|
6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer
|
7 |
+
from importlib_resources import files
|
8 |
+
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
9 |
+
from ldm.modules.encoders.CLAP.clap import TextEncoder
|
10 |
+
import copy
|
11 |
+
from ldm.util import default, count_params
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
|
14 |
+
class AbstractEncoder(pl.LightningModule):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def encode(self, *args, **kwargs):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
|
22 |
+
class ClassEmbedder(nn.Module):
|
23 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
24 |
+
super().__init__()
|
25 |
+
self.key = key
|
26 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
27 |
+
|
28 |
+
def forward(self, batch, key=None):
|
29 |
+
if key is None:
|
30 |
+
key = self.key
|
31 |
+
# this is for use in crossattn
|
32 |
+
c = batch[key][:, None]# (bsz,1)
|
33 |
+
c = self.embedding(c)
|
34 |
+
return c
|
35 |
+
|
36 |
+
|
37 |
+
class TransformerEmbedder(AbstractEncoder):
|
38 |
+
"""Some transformer encoder layers"""
|
39 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
40 |
+
super().__init__()
|
41 |
+
self.device = device
|
42 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
43 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
44 |
+
|
45 |
+
def forward(self, tokens):
|
46 |
+
tokens = tokens.to(self.device) # meh
|
47 |
+
z = self.transformer(tokens, return_embeddings=True)
|
48 |
+
return z
|
49 |
+
|
50 |
+
def encode(self, x):
|
51 |
+
return self(x)
|
52 |
+
|
53 |
+
|
54 |
+
class BERTTokenizer(AbstractEncoder):
|
55 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
56 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
57 |
+
super().__init__()
|
58 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
59 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
60 |
+
self.device = device
|
61 |
+
self.vq_interface = vq_interface
|
62 |
+
self.max_length = max_length
|
63 |
+
|
64 |
+
def forward(self, text):
|
65 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
66 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
67 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
68 |
+
return tokens
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def encode(self, text):
|
72 |
+
tokens = self(text)
|
73 |
+
if not self.vq_interface:
|
74 |
+
return tokens
|
75 |
+
return None, None, [None, None, tokens]
|
76 |
+
|
77 |
+
def decode(self, text):
|
78 |
+
return text
|
79 |
+
|
80 |
+
|
81 |
+
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper
|
82 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
83 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
84 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
85 |
+
super().__init__()
|
86 |
+
self.use_tknz_fn = use_tokenizer
|
87 |
+
if self.use_tknz_fn:
|
88 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
89 |
+
self.device = device
|
90 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
91 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
92 |
+
emb_dropout=embedding_dropout)
|
93 |
+
|
94 |
+
def forward(self, text):
|
95 |
+
if self.use_tknz_fn:
|
96 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
97 |
+
else:
|
98 |
+
tokens = text
|
99 |
+
z = self.transformer(tokens, return_embeddings=True)
|
100 |
+
return z
|
101 |
+
|
102 |
+
def encode(self, text):
|
103 |
+
# output of length 77
|
104 |
+
return self(text)
|
105 |
+
|
106 |
+
|
107 |
+
class SpatialRescaler(nn.Module):
|
108 |
+
def __init__(self,
|
109 |
+
n_stages=1,
|
110 |
+
method='bilinear',
|
111 |
+
multiplier=0.5,
|
112 |
+
in_channels=3,
|
113 |
+
out_channels=None,
|
114 |
+
bias=False):
|
115 |
+
super().__init__()
|
116 |
+
self.n_stages = n_stages
|
117 |
+
assert self.n_stages >= 0
|
118 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
119 |
+
self.multiplier = multiplier
|
120 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
121 |
+
self.remap_output = out_channels is not None
|
122 |
+
if self.remap_output:
|
123 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
124 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
125 |
+
|
126 |
+
def forward(self,x):
|
127 |
+
for stage in range(self.n_stages):
|
128 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
129 |
+
|
130 |
+
|
131 |
+
if self.remap_output:
|
132 |
+
x = self.channel_mapper(x)
|
133 |
+
return x
|
134 |
+
|
135 |
+
def encode(self, x):
|
136 |
+
return self(x)
|
137 |
+
|
138 |
+
def disabled_train(self, mode=True):
|
139 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
140 |
+
does not change anymore."""
|
141 |
+
return self
|
142 |
+
|
143 |
+
class FrozenT5Embedder(AbstractEncoder):
|
144 |
+
"""Uses the T5 transformer encoder for text"""
|
145 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
146 |
+
super().__init__()
|
147 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
148 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
149 |
+
self.device = device
|
150 |
+
self.max_length = max_length # TODO: typical value?
|
151 |
+
if freeze:
|
152 |
+
self.freeze()
|
153 |
+
|
154 |
+
def freeze(self):
|
155 |
+
self.transformer = self.transformer.eval()
|
156 |
+
#self.train = disabled_train
|
157 |
+
for param in self.parameters():
|
158 |
+
param.requires_grad = False
|
159 |
+
|
160 |
+
def forward(self, text):
|
161 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
162 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
163 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
164 |
+
outputs = self.transformer(input_ids=tokens)
|
165 |
+
|
166 |
+
z = outputs.last_hidden_state
|
167 |
+
return z
|
168 |
+
|
169 |
+
def encode(self, text):
|
170 |
+
return self(text)
|
171 |
+
|
172 |
+
class FrozenFLANEmbedder(AbstractEncoder):
|
173 |
+
"""Uses the T5 transformer encoder for text"""
|
174 |
+
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
175 |
+
super().__init__()
|
176 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
177 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
178 |
+
self.device = device
|
179 |
+
self.max_length = max_length # TODO: typical value?
|
180 |
+
if freeze:
|
181 |
+
self.freeze()
|
182 |
+
|
183 |
+
def freeze(self):
|
184 |
+
self.transformer = self.transformer.eval()
|
185 |
+
#self.train = disabled_train
|
186 |
+
for param in self.parameters():
|
187 |
+
param.requires_grad = False
|
188 |
+
|
189 |
+
def forward(self, text):
|
190 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
191 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
192 |
+
tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch
|
193 |
+
outputs = self.transformer(input_ids=tokens)
|
194 |
+
|
195 |
+
z = outputs.last_hidden_state
|
196 |
+
return z
|
197 |
+
|
198 |
+
def encode(self, text):
|
199 |
+
return self(text)
|
200 |
+
|
201 |
+
class FrozenCLAPEmbedder(AbstractEncoder):
|
202 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
203 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
207 |
+
match_params = dict()
|
208 |
+
for key in list(model_state_dict.keys()):
|
209 |
+
if 'caption_encoder' in key:
|
210 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
211 |
+
|
212 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
213 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
214 |
+
|
215 |
+
# To device
|
216 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
217 |
+
self.caption_encoder = TextEncoder(
|
218 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
219 |
+
)
|
220 |
+
|
221 |
+
self.max_length = max_length
|
222 |
+
self.device = device
|
223 |
+
if freeze: self.freeze()
|
224 |
+
|
225 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
226 |
+
|
227 |
+
def freeze(self):# only freeze
|
228 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
229 |
+
for param in self.caption_encoder.base.parameters():
|
230 |
+
param.requires_grad = False
|
231 |
+
|
232 |
+
|
233 |
+
def encode(self, text):
|
234 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
235 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
236 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
237 |
+
|
238 |
+
outputs = self.caption_encoder.base(input_ids=tokens)
|
239 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
240 |
+
return z
|
241 |
+
|
242 |
+
class FrozenLAIONCLAPEmbedder(AbstractEncoder):
|
243 |
+
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
244 |
+
def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32
|
245 |
+
super().__init__()
|
246 |
+
# To device
|
247 |
+
from transformers import RobertaTokenizer
|
248 |
+
from ldm.modules.encoders.open_clap import create_model
|
249 |
+
self.sentence = sentence
|
250 |
+
|
251 |
+
model, model_cfg = create_model(
|
252 |
+
'HTSAT-tiny',
|
253 |
+
'roberta',
|
254 |
+
weights_path,
|
255 |
+
enable_fusion=True,
|
256 |
+
fusion_type='aff_2d'
|
257 |
+
)
|
258 |
+
|
259 |
+
del model.audio_branch, model.audio_transform, model.audio_projection
|
260 |
+
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
261 |
+
self.model = model
|
262 |
+
|
263 |
+
self.max_length = max_length
|
264 |
+
self.device = device
|
265 |
+
self.to(self.device)
|
266 |
+
if freeze: self.freeze()
|
267 |
+
|
268 |
+
param_num = sum(p.numel() for p in model.parameters())
|
269 |
+
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.')
|
270 |
+
|
271 |
+
def to(self,device):
|
272 |
+
self.model.to(device=device)
|
273 |
+
self.device=device
|
274 |
+
|
275 |
+
def freeze(self):
|
276 |
+
self.model = self.model.eval()
|
277 |
+
for param in self.model.parameters():
|
278 |
+
param.requires_grad = False
|
279 |
+
|
280 |
+
def encode(self, text):
|
281 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device)
|
282 |
+
if self.sentence:
|
283 |
+
z = self.model.get_text_embedding(batch_encoding).unsqueeze(1)
|
284 |
+
else:
|
285 |
+
# text_branch is roberta
|
286 |
+
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device))
|
287 |
+
z = self.model.text_projection(outputs.last_hidden_state)
|
288 |
+
|
289 |
+
return z
|
290 |
+
|
291 |
+
class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder):
|
292 |
+
"""Uses the CLAP transformer encoder for text from LAION-AI"""
|
293 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
294 |
+
super().__init__()
|
295 |
+
# To device
|
296 |
+
from transformers import RobertaTokenizer
|
297 |
+
from ldm.modules.encoders.open_clap import create_model
|
298 |
+
|
299 |
+
|
300 |
+
model, model_cfg = create_model(
|
301 |
+
'HTSAT-tiny',
|
302 |
+
'roberta',
|
303 |
+
weights_path,
|
304 |
+
enable_fusion=True,
|
305 |
+
fusion_type='aff_2d'
|
306 |
+
)
|
307 |
+
|
308 |
+
del model.audio_branch, model.audio_transform, model.audio_projection
|
309 |
+
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
|
310 |
+
self.model = model
|
311 |
+
|
312 |
+
self.max_length = max_length
|
313 |
+
self.device = device
|
314 |
+
if freeze: self.freeze()
|
315 |
+
|
316 |
+
param_num = sum(p.numel() for p in model.parameters())
|
317 |
+
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.')
|
318 |
+
|
319 |
+
def freeze(self):
|
320 |
+
self.model = self.model.eval()
|
321 |
+
for param in self.model.parameters():
|
322 |
+
param.requires_grad = False
|
323 |
+
|
324 |
+
def tokenizer(self, text):
|
325 |
+
result = self.tokenize(
|
326 |
+
text,
|
327 |
+
padding="max_length",
|
328 |
+
truncation=True,
|
329 |
+
max_length=512,
|
330 |
+
return_tensors="pt",
|
331 |
+
)
|
332 |
+
return result
|
333 |
+
|
334 |
+
def encode(self, text):
|
335 |
+
with torch.no_grad():
|
336 |
+
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
|
337 |
+
text_data = self.tokenizer(text)# input_ids shape:(b,512)
|
338 |
+
embed = self.model.get_text_embedding(text_data)
|
339 |
+
embed = embed.unsqueeze(1)# (b,1,512)
|
340 |
+
return embed
|
341 |
+
|
342 |
+
class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上|
|
343 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
344 |
+
def __init__(self, weights_path, freeze=True, device="cuda"):
|
345 |
+
super().__init__()
|
346 |
+
|
347 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
348 |
+
match_params = dict()
|
349 |
+
for key in list(model_state_dict.keys()):
|
350 |
+
if 'caption_encoder' in key:
|
351 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
352 |
+
|
353 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
354 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
355 |
+
|
356 |
+
# To device
|
357 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
358 |
+
self.caption_encoder = TextEncoder(
|
359 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
360 |
+
).to(device)
|
361 |
+
self.max_objs = 10
|
362 |
+
self.max_length = args.text_len
|
363 |
+
self.device = device
|
364 |
+
self.order_to_label = self.build_order_dict()
|
365 |
+
if freeze: self.freeze()
|
366 |
+
|
367 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
368 |
+
|
369 |
+
def freeze(self):
|
370 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
371 |
+
for param in self.caption_encoder.base.parameters():
|
372 |
+
param.requires_grad = False
|
373 |
+
|
374 |
+
def build_order_dict(self):
|
375 |
+
order2label = {}
|
376 |
+
num_orders = 10
|
377 |
+
time_stamps = ['start','mid','end']
|
378 |
+
time_num = len(time_stamps)
|
379 |
+
for i in range(num_orders):
|
380 |
+
for j,time_stamp in enumerate(time_stamps):
|
381 |
+
order2label[f'order {i} {time_stamp}'] = i * time_num + j
|
382 |
+
order2label['all'] = num_orders*len(time_stamps)
|
383 |
+
order2label['unknown'] = num_orders*len(time_stamps) + 1
|
384 |
+
return order2label
|
385 |
+
|
386 |
+
def encode(self, text):
|
387 |
+
obj_list,orders_list = [],[]
|
388 |
+
for raw in text:
|
389 |
+
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
390 |
+
objs = []
|
391 |
+
orders = []
|
392 |
+
for split in splits:# <obj& order>
|
393 |
+
split = split[1:-1]
|
394 |
+
obj,order = split.split('&')
|
395 |
+
objs.append(obj.strip())
|
396 |
+
try:
|
397 |
+
orders.append(self.order_to_label[order.strip()])
|
398 |
+
except:
|
399 |
+
print(order.strip(),raw)
|
400 |
+
assert len(objs) == len(orders)
|
401 |
+
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
402 |
+
orders_list.append(orders)
|
403 |
+
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
404 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
405 |
+
tokens = batch_encoding["input_ids"]
|
406 |
+
|
407 |
+
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
408 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
409 |
+
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list}
|
410 |
+
|
411 |
+
class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。
|
412 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
413 |
+
def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32
|
414 |
+
super().__init__()
|
415 |
+
|
416 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
417 |
+
match_params = dict()
|
418 |
+
for key in list(model_state_dict.keys()):
|
419 |
+
if 'caption_encoder' in key:
|
420 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
421 |
+
|
422 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
423 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
424 |
+
|
425 |
+
# To device
|
426 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
427 |
+
self.caption_encoder = TextEncoder(
|
428 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
429 |
+
).to(device)
|
430 |
+
self.max_objs = 10
|
431 |
+
self.max_length = args.text_len
|
432 |
+
self.device = device
|
433 |
+
self.order_to_label = self.build_order_dict()
|
434 |
+
if freeze: self.freeze()
|
435 |
+
|
436 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
437 |
+
|
438 |
+
def freeze(self):
|
439 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
440 |
+
for param in self.caption_encoder.base.parameters():
|
441 |
+
param.requires_grad = False
|
442 |
+
|
443 |
+
def build_order_dict(self):
|
444 |
+
order2label = {}
|
445 |
+
time_stamps = ['all','start','mid','end']
|
446 |
+
for i,time_stamp in enumerate(time_stamps):
|
447 |
+
order2label[time_stamp] = i
|
448 |
+
return order2label
|
449 |
+
|
450 |
+
def encode(self, text):
|
451 |
+
obj_list,orders_list = [],[]
|
452 |
+
for raw in text:
|
453 |
+
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>'
|
454 |
+
objs = []
|
455 |
+
orders = []
|
456 |
+
for split in splits:# <obj& order>
|
457 |
+
split = split[1:-1]
|
458 |
+
obj,order = split.split('&')
|
459 |
+
objs.append(obj.strip())
|
460 |
+
try:
|
461 |
+
orders.append(self.order_to_label[order.strip()])
|
462 |
+
except:
|
463 |
+
print(order.strip(),raw)
|
464 |
+
assert len(objs) == len(orders)
|
465 |
+
obj_list.append(' | '.join(objs)+' |')# '|' after every word
|
466 |
+
orders_list.append(orders)
|
467 |
+
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True,
|
468 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
469 |
+
tokens = batch_encoding["input_ids"]
|
470 |
+
attn_mask = batch_encoding["attention_mask"]
|
471 |
+
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device))
|
472 |
+
z = outputs.last_hidden_state
|
473 |
+
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask}
|
474 |
+
|
475 |
+
class FrozenCLAPT5Embedder(AbstractEncoder):
|
476 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
477 |
+
def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
478 |
+
super().__init__()
|
479 |
+
|
480 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
481 |
+
match_params = dict()
|
482 |
+
for key in list(model_state_dict.keys()):
|
483 |
+
if 'caption_encoder' in key:
|
484 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
485 |
+
|
486 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
487 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
488 |
+
|
489 |
+
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
490 |
+
self.caption_encoder = TextEncoder(
|
491 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
492 |
+
)
|
493 |
+
|
494 |
+
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
495 |
+
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
496 |
+
|
497 |
+
self.max_length = max_length
|
498 |
+
self.to(device=device)
|
499 |
+
if freeze: self.freeze()
|
500 |
+
|
501 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
502 |
+
|
503 |
+
def freeze(self):
|
504 |
+
self.caption_encoder = self.caption_encoder.eval()
|
505 |
+
for param in self.caption_encoder.parameters():
|
506 |
+
param.requires_grad = False
|
507 |
+
|
508 |
+
def to(self,device):
|
509 |
+
self.t5_transformer.to(device)
|
510 |
+
self.caption_encoder.to(device)
|
511 |
+
self.device = device
|
512 |
+
|
513 |
+
def encode(self, text):
|
514 |
+
ori_caption = text['ori_caption']
|
515 |
+
struct_caption = text['struct_caption']
|
516 |
+
# print(ori_caption,struct_caption)
|
517 |
+
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
518 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
519 |
+
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
520 |
+
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
521 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
522 |
+
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
523 |
+
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
524 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
525 |
+
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
526 |
+
return torch.concat([z,z2],dim=1)
|
527 |
+
|
528 |
+
|
529 |
+
class FrozenCLAPFLANEmbedder(AbstractEncoder):
|
530 |
+
"""Uses the CLAP transformer encoder for text from microsoft"""
|
531 |
+
def __init__(self, weights_path,t5version="ldm/modules/encoders/CLAP/t5-v1_1-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
532 |
+
super().__init__()
|
533 |
+
|
534 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
535 |
+
match_params = dict()
|
536 |
+
for key in list(model_state_dict.keys()):
|
537 |
+
if 'caption_encoder' in key:
|
538 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
539 |
+
|
540 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text()
|
541 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
542 |
+
|
543 |
+
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
544 |
+
self.caption_encoder = TextEncoder(
|
545 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
546 |
+
)
|
547 |
+
|
548 |
+
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
|
549 |
+
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
|
550 |
+
|
551 |
+
self.max_length = max_length
|
552 |
+
# self.to(device=device)
|
553 |
+
if freeze: self.freeze()
|
554 |
+
|
555 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
556 |
+
|
557 |
+
def freeze(self):
|
558 |
+
self.caption_encoder = self.caption_encoder.eval()
|
559 |
+
for param in self.caption_encoder.parameters():
|
560 |
+
param.requires_grad = False
|
561 |
+
|
562 |
+
def to(self,device):
|
563 |
+
self.t5_transformer.to(device)
|
564 |
+
self.caption_encoder.to(device)
|
565 |
+
self.device = device
|
566 |
+
|
567 |
+
def encode(self, text):
|
568 |
+
ori_caption = text['ori_caption']
|
569 |
+
struct_caption = text['struct_caption']
|
570 |
+
# print(ori_caption,struct_caption)
|
571 |
+
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True,
|
572 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
573 |
+
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
|
574 |
+
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True,
|
575 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
576 |
+
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
|
577 |
+
# if self.caption_encoder.device != ori_tokens.device:
|
578 |
+
# self.to(self.device)
|
579 |
+
outputs = self.caption_encoder.base(input_ids=ori_tokens)
|
580 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
581 |
+
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
|
582 |
+
return torch.concat([z,z2],dim=1)
|