Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from pytorch_memlab import LineProfiler,profile | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import pytorch_lightning as pl | |
from torch.optim.lr_scheduler import LambdaLR | |
from einops import rearrange, repeat | |
from contextlib import contextmanager | |
from functools import partial | |
from tqdm import tqdm | |
from torchvision.utils import make_grid | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config | |
from ldm.modules.ema import LitEma | |
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution | |
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL | |
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.ddpm import DDPM, disabled_train, DiffusionWrapper | |
from omegaconf import ListConfig | |
from ldm.models.diffusion.scheduling_lcm import LCMSampler | |
from ldm.models.diffusion.ddim_solver import DDIMSolver | |
__conditioning_keys__ = {'concat': 'c_concat', | |
'crossattn': 'c_crossattn', | |
'adm': 'y'} | |
def append_dims(x, target_dims): | |
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
dims_to_append = target_dims - x.ndim | |
if dims_to_append < 0: | |
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") | |
return x[(...,) + (None,) * dims_to_append] | |
# From LCMScheduler.get_scalings_for_boundary_condition_discrete | |
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0): | |
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2) | |
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5 | |
return c_skip, c_out | |
class LCM_audio(DDPM): | |
"""main class""" | |
def __init__(self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
mel_dim=80, | |
mel_length=848, | |
cond_stage_key="image", | |
cond_stage_trainable=False, | |
concat_mode=True, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
scale_factor=1.0, | |
scale_by_std=False, | |
use_lcm=True, | |
num_ddim_timesteps=50, | |
w_min=None, | |
w_max=None, | |
*args, **kwargs): | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs['timesteps'] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
if conditioning_key is None: | |
conditioning_key = 'concat' if concat_mode else 'crossattn' | |
if cond_stage_config == '__is_unconditional__': | |
conditioning_key = None | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.concat_mode = concat_mode | |
self.mel_dim = mel_dim | |
self.mel_length = mel_length | |
self.use_lcm = use_lcm | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.cond_stage_forward = cond_stage_forward | |
self.clip_denoised = False | |
self.bbox_tokenizer = None | |
self.restarted_from_ckpt = False | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys) | |
self.restarted_from_ckpt = True | |
if self.use_lcm: | |
### DDIM Solver | |
self.solver = DDIMSolver(self.alphas_cumprod.numpy(),self.num_timesteps, num_ddim_timesteps) | |
step_ratio = self.num_timesteps // num_ddim_timesteps | |
self.step_ratio = step_ratio | |
self.num_ddim_timesteps = num_ddim_timesteps | |
self.ddim_timesteps = (np.arange(1, num_ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1 | |
# convert to torch tensors | |
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() | |
self.model.requires_grad_(False) | |
self.unet = DiffusionWrapper(self.unet_config, conditioning_key) | |
self.unet.load_state_dict(self.model.state_dict(), strict=False) | |
self.unet.train() | |
self.target_unet = DiffusionWrapper(self.unet_config, conditioning_key) | |
self.target_unet.load_state_dict(self.unet.state_dict()) | |
self.target_unet.requires_grad_(False) | |
self.target_unet.train() | |
self.w_min = w_min | |
self.w_max = w_max | |
def make_cond_schedule(self, ): | |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
self.cond_ids[:self.num_timesteps_cond] = ids | |
def on_train_batch_start(self, batch, batch_idx): | |
# only for very first batch | |
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: | |
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
print("### USING STD-RESCALING ###") | |
x = super().get_input(batch, self.first_stage_key) | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach()# get latent | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std())# 1/latent.std, get_first_stage_encoding returns self.scale_factor * latent | |
print(f"setting self.scale_factor to {self.scale_factor}") | |
print("### USING STD-RESCALING ###") | |
# def on_train_epoch_start(self): | |
# print("!!!!!!!!!!!!!!!!!!!!!!!!!!on_train_epoch_strat",self.trainer.train_dataloader.batch_sampler,hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch')) | |
# if hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'): | |
# self.trainer.train_dataloader.batch_sampler.set_epoch(self.current_epoch) | |
# return super().on_train_epoch_start() | |
def register_schedule(self, | |
given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if not self.cond_stage_trainable: | |
if config == "__is_first_stage__": | |
print("Using first stage also as cond stage.") | |
self.cond_stage_model = self.first_stage_model | |
elif config == "__is_unconditional__": | |
print(f"Training {self.__class__.__name__} as an unconditional model.") | |
self.cond_stage_model = None | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
assert config != '__is_first_stage__' | |
assert config != '__is_unconditional__' | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): | |
denoise_row = [] | |
for zd in tqdm(samples, desc=desc): | |
denoise_row.append(self.decode_first_stage(zd.to(self.device), | |
force_not_quantize=force_no_decoder_quantization)) | |
n_imgs_per_row = len(denoise_row) | |
if len(denoise_row[0].shape) == 3: | |
denoise_row = [x.unsqueeze(1) for x in denoise_row] | |
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W | |
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def get_first_stage_encoding(self, encoder_posterior): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
return self.scale_factor * z | |
#@profile | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def get_unconditional_conditioning(self, batch_size, null_label=None): | |
if null_label is not None: | |
xc = null_label | |
if isinstance(xc, ListConfig): | |
xc = list(xc) | |
if isinstance(xc, dict) or isinstance(xc, list): | |
c = self.get_learned_conditioning(xc) | |
else: | |
if hasattr(xc, "to"): | |
xc = xc.to(self.device) | |
c = self.get_learned_conditioning(xc) | |
else: | |
if self.cond_stage_key in ["class_label", "cls"]: | |
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device) | |
return self.get_learned_conditioning(xc) | |
else: | |
raise NotImplementedError("todo") | |
if isinstance(c, list): # in case the encoder gives us a list | |
for i in range(len(c)): | |
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device) | |
else: | |
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) | |
return c | |
def meshgrid(self, h, w): | |
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) | |
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) | |
arr = torch.cat([y, x], dim=-1) | |
return arr | |
def delta_border(self, h, w): | |
""" | |
:param h: height | |
:param w: width | |
:return: normalized distance to image border, | |
wtith min distance = 0 at border and max dist = 0.5 at image center | |
""" | |
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) | |
arr = self.meshgrid(h, w) / lower_right_corner | |
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] | |
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] | |
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] | |
return edge_dist | |
def get_weighting(self, h, w, Ly, Lx, device): | |
weighting = self.delta_border(h, w) | |
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], | |
self.split_input_params["clip_max_weight"], ) | |
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) | |
if self.split_input_params["tie_braker"]: | |
L_weighting = self.delta_border(Ly, Lx) | |
L_weighting = torch.clip(L_weighting, | |
self.split_input_params["clip_min_tie_weight"], | |
self.split_input_params["clip_max_tie_weight"]) | |
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) | |
weighting = weighting * L_weighting | |
return weighting | |
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code | |
""" | |
:param x: img of size (bs, c, h, w) | |
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) | |
""" | |
bs, nc, h, w = x.shape | |
# number of crops in image | |
Ly = (h - kernel_size[0]) // stride[0] + 1 | |
Lx = (w - kernel_size[1]) // stride[1] + 1 | |
if uf == 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) | |
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) | |
elif uf > 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), | |
dilation=1, padding=0, | |
stride=(stride[0] * uf, stride[1] * uf)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) | |
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) | |
elif df > 1 and uf == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), | |
dilation=1, padding=0, | |
stride=(stride[0] // df, stride[1] // df)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) | |
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) | |
else: | |
raise NotImplementedError | |
return fold, unfold, normalization, weighting | |
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, | |
cond_key=None, return_original_cond=False, bs=None): | |
x = super().get_input(batch, k) | |
if bs is not None: | |
x = x[:bs] | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
if self.model.conditioning_key is not None: | |
if cond_key is None: | |
cond_key = self.cond_stage_key | |
if cond_key != self.first_stage_key: | |
if cond_key in ['caption', 'coordinates_bbox']: | |
xc = batch[cond_key] | |
elif cond_key == 'class_label': | |
xc = batch | |
else: | |
xc = super().get_input(batch, cond_key).to(self.device) | |
else: | |
xc = x | |
if not self.cond_stage_trainable or force_c_encode: | |
if isinstance(xc, dict) or isinstance(xc, list): | |
# import pudb; pudb.set_trace() | |
c = self.get_learned_conditioning(xc) | |
else: | |
c = self.get_learned_conditioning(xc.to(self.device)) | |
else: | |
c = xc | |
if bs is not None: | |
c = c[:bs] | |
# Testing # | |
if cond_key == 'masked_image': | |
mask = super().get_input(batch, "mask") | |
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106] | |
c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106] | |
# Testing # | |
if self.use_positional_encodings: | |
pos_x, pos_y = self.compute_latent_shifts(batch) | |
ckey = __conditioning_keys__[self.model.conditioning_key] | |
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} | |
else: | |
c = None | |
xc = None | |
if self.use_positional_encodings: | |
pos_x, pos_y = self.compute_latent_shifts(batch) | |
c = {'pos_x': pos_x, 'pos_y': pos_y} | |
out = [z, c] | |
if return_first_stage_outputs: | |
xrec = self.decode_first_stage(z) | |
out.extend([x, xrec]) | |
if return_original_cond: | |
out.append(xc) | |
return out | |
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
if predict_cids: | |
if z.dim() == 4: | |
z = torch.argmax(z.exp(), dim=1).long() | |
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
z = 1. / self.scale_factor * z | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
# same as above but without decorator | |
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
if predict_cids: | |
if z.dim() == 4: | |
z = torch.argmax(z.exp(), dim=1).long() | |
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
z = 1. / self.scale_factor * z | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
def encode_first_stage(self, x): | |
return self.first_stage_model.encode(x) | |
def shared_step(self, batch, **kwargs): | |
x, c = self.get_input(batch, self.first_stage_key) | |
loss = self(x, c) | |
return loss | |
def test_step(self,batch,batch_idx): | |
cond = batch[self.cond_stage_key] # * self.test_repeat | |
cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim] | |
batch_size = len(cond) | |
enc_emb = self.sample(cond,batch_size,timesteps=self.num_timesteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length] | |
xrec = self.decode_first_stage(enc_emb) | |
# reconstructions = (xrec + 1)/2 # to mel scale | |
# test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) | |
# savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') | |
# if not os.path.exists(savedir): | |
# os.makedirs(savedir) | |
# file_names = batch['f_name'] | |
# nfiles = len(file_names) | |
# reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim | |
# for k in range(reconstructions.shape[0]): | |
# b,repeat = k % nfiles, k // nfiles | |
# vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num | |
# v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] | |
# save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition | |
# np.save(save_img_path,reconstructions[b]) | |
return None | |
def forward(self, x, cond, *args, **kwargs): | |
if self.use_lcm: | |
index = torch.randint(0, self.num_ddim_timesteps, (x.shape[0],), device=self.device).long() | |
t = self.ddim_timesteps[index].to(self.device) | |
# t = torch.randint(0, self.ddim_timesteps, (x.shape[0],), device=self.device).long() | |
else: | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
if self.model.conditioning_key is not None: | |
assert cond is not None | |
cond = cond.to(x.device) | |
if self.cond_stage_trainable: | |
cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim] | |
if self.shorten_cond_schedule: # TODO: drop this option | |
tc = self.cond_ids[t].to(self.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond.float())) | |
if self.use_lcm: | |
return self.lcm_losses(x, cond, t, index, *args, **kwargs) | |
return self.p_losses(x, cond, t, *args, **kwargs) | |
def apply_model(self, x_noisy, t, cond, model, w_cond=None, return_ids=False): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
key = 'c_concat' if model.conditioning_key == 'concat' else 'c_crossattn' | |
cond = {key: cond} | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
if model.conditioning_key == "concat": | |
key = "c_concat" | |
elif model.conditioning_key == "crossattn": | |
key = "c_crossattn" | |
else: | |
key = "c_film" | |
cond = {key: cond} | |
x_recon = model(x_noisy, t, **cond, w_cond=w_cond) | |
if isinstance(x_recon, tuple) and not return_ids: | |
return x_recon[0] | |
else: | |
return x_recon | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def p_losses(self, x_start, cond, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
mean_dims = list(range(1,len(target.shape))) | |
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims) | |
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
logvar_t = self.logvar[t].to(self.device) | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
if self.learn_logvar: | |
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
loss_dict.update({'logvar': self.logvar.data.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
return_x0=False, score_corrector=None, corrector_kwargs=None): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
# From LatentConsistencyModel.get_guidance_scale_embedding | |
def guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps (`torch.Tensor`): | |
generate embedding vectors at these timesteps | |
embedding_dim (`int`, *optional*, defaults to 512): | |
dimension of the embeddings to generate | |
dtype: | |
data type of the generated embeddings | |
Returns: | |
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def lcm_losses(self, x_start, cond, t, index, noise=None): | |
# 20.4.4. Get boundary scalings for start_timesteps and (end) timesteps. | |
c_skip_start, c_out_start = scalings_for_boundary_conditions(t) | |
c_skip_start, c_out_start = [append_dims(x, x_start.ndim) for x in [c_skip_start, c_out_start]] | |
timesteps = t - self.step_ratio | |
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps) | |
c_skip, c_out = scalings_for_boundary_conditions(timesteps) | |
c_skip, c_out = [append_dims(x, x_start.ndim) for x in [c_skip, c_out]] | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
bsz = x_start.shape[0] | |
# 20.4.6. Sample a random guidance scale w from U[w_min, w_max] and embed it | |
w = (self.w_max - self.w_min) * torch.rand((bsz,)) + self.w_min | |
w_embedding = self.guidance_scale_embedding(w, embedding_dim=256) | |
w = w.reshape(bsz, 1, 1) | |
# Move to U-Net device and dtype | |
w = w.to(device=x_start.device, dtype=x_start.dtype) | |
w_embedding = w_embedding.to(device=x_start.device, dtype=x_start.dtype) | |
# import ipdb | |
# ipdb.set_trace() | |
model_output = self.apply_model(x_noisy, t, cond, self.unet, w_cond=w_embedding) | |
pred_x_0 = self.predict_start_from_noise(x_noisy,t,model_output) | |
model_pred = c_skip_start * x_noisy + c_out_start * pred_x_0 | |
# 20.4.10. Use the ODE solver to predict the kth step in the augmented PF-ODE trajectory after | |
# noisy_latents with both the conditioning embedding c and unconditional embedding 0 | |
# Get teacher model prediction on noisy_latents and conditional embedding | |
with torch.no_grad(): | |
with torch.autocast("cuda"): | |
teacher_output = self.apply_model(x_noisy, t, cond, self.model) | |
teacher_pred_x0 = self.predict_start_from_noise(x_noisy,t,teacher_output) | |
uncond = self.get_learned_conditioning({'ori_caption': [""] * bsz,"struct_caption":[""] * bsz}) | |
uncond_teacher_output = self.apply_model(x_noisy, t, uncond, self.model) | |
uncond_teacher_pred_x0 = self.predict_start_from_noise(x_noisy,t,uncond_teacher_output) | |
pred_x0 = teacher_pred_x0 + w * (teacher_pred_x0 - uncond_teacher_pred_x0) | |
pred_noise = teacher_output + w * (teacher_output - uncond_teacher_output) | |
x_prev = self.solver.ddim_step(pred_x0, pred_noise, index) | |
# 20.4.12. Get target LCM prediction on x_prev, w, c, t_n | |
with torch.no_grad(): | |
with torch.autocast("cuda"): | |
target_noise_pred = self.apply_model(x_prev.float(), timesteps, cond, self.target_unet, w_cond=w_embedding) | |
pred_x_0 = self.predict_start_from_noise(x_prev,timesteps,target_noise_pred) | |
target = c_skip * x_prev + c_out * pred_x_0 | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
# if self.parameterization == "x0": | |
# target = x_start | |
# elif self.parameterization == "eps": | |
# target = noise | |
# else: | |
# raise NotImplementedError() | |
# mean_dims = list(range(1,len(target.shape))) | |
# loss_simple = self.get_loss(model_pred, target, mean=False).mean(dim=mean_dims) | |
# loss = self.get_loss(model_pred, target, mean=True) | |
# loss_dict.update({f'{prefix}/loss_simple': loss.mean()}) | |
# loss = torch.nn.functional.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
loss = torch.mean( | |
torch.sqrt((model_pred.float() - target.float()) ** 2 + 0.001**2) - 0.001 | |
) | |
loss_dict.update({f'{prefix}/loss': loss.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
# logvar_t = self.logvar[t].to(self.device) | |
# loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# # loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
# if self.learn_logvar: | |
# loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
# loss_dict.update({'logvar': self.logvar.data.mean()}) | |
# loss = self.l_simple_weight * loss.mean() | |
# loss_vlb = self.get_loss(model_pred, target, mean=False).mean(dim=mean_dims) | |
# loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
# loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
# loss += (self.original_elbo_weight * loss_vlb) | |
# loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
model_mean, _, model_log_variance, logits = outputs | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_codebook_ids: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, return_x0=True, | |
temperature=temperature[i], noise_dropout=noise_dropout, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop(self, cond, shape, return_intermediates=False, | |
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
verbose=True, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, shape=None,**kwargs): | |
if shape is None: | |
if self.channels > 0: | |
shape = (batch_size, self.channels, self.mel_dim, self.mel_length) | |
else: | |
shape = (batch_size, self.mel_dim, self.mel_length) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
return self.p_sample_loop(cond, | |
shape, | |
return_intermediates=return_intermediates, x_T=x_T, | |
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
mask=mask, x0=x0) | |
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): | |
lcm_sampler = LCMSampler(self) | |
shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length) | |
samples, intermediates = lcm_sampler.sample(ddim_steps,batch_size, | |
shape,cond,verbose=False,**kwargs) | |
# if ddim: | |
# ddim_sampler = DDIMSampler(self) | |
# shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length) | |
# samples, intermediates = ddim_sampler.sample(ddim_steps,batch_size, | |
# shape,cond,verbose=False,**kwargs) | |
# else: | |
# samples, intermediates = self.sample(cond=cond, batch_size=batch_size, | |
# return_intermediates=True,**kwargs) | |
return samples, intermediates | |
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=1., return_keys=None, | |
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True, | |
plot_diffusion_rows=True, **kwargs): | |
use_ddim = ddim_steps is not None | |
log = dict() | |
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, | |
return_first_stage_outputs=True, | |
force_c_encode=True, | |
return_original_cond=True, | |
bs=N) # z is latent,c is condition embedding, xc is condition(caption) list | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1) | |
log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1) | |
if self.model.conditioning_key is not None: | |
if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image": | |
xc = self.cond_stage_model.decode(c) | |
log["conditioning"] = xc | |
elif self.cond_stage_key == "masked_image": | |
log["mask"] = c[:, -1, :, :][:, None, :, :] | |
xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :]) | |
log["conditioning"] = xc | |
elif self.cond_stage_key in ["caption"]: | |
pass | |
# xc = log_txt_as_img((256, 256), batch["caption"]) | |
# log["conditioning"] = xc | |
elif self.cond_stage_key == 'class_label': | |
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) | |
log['conditioning'] = xc | |
elif isimage(xc): | |
log["conditioning"] = xc | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
z_start = z[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(z_start) | |
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
diffusion_row.append(self.decode_first_stage(z_noisy)) | |
if len(diffusion_row[0].shape) == 3: | |
diffusion_row = [x.unsqueeze(1) for x in diffusion_row] | |
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
log["diffusion_row"] = diffusion_grid | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta) | |
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1) | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( | |
self.first_stage_model, IdentityFirstStage): | |
# also display when quantizing x0 while sampling | |
with self.ema_scope("Plotting Quantized Denoised"): | |
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta, | |
quantize_denoised=True) | |
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, | |
# quantize_denoised=True) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_x0_quantized"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1) | |
if inpaint: | |
# make a simple center square | |
b, h, w = z.shape[0], z.shape[2], z.shape[3] | |
mask = torch.ones(N, h, w).to(self.device) | |
# zeros will be filled in | |
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. | |
mask = mask[:, None, ...] | |
with self.ema_scope("Plotting Inpaint"): | |
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, | |
ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_inpainting"] = x_samples | |
log["mask_inpainting"] = mask | |
# outpaint | |
mask = 1 - mask | |
with self.ema_scope("Plotting Outpaint"): | |
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, | |
ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_outpainting"] = x_samples | |
log["mask_outpainting"] = mask | |
# if plot_progressive_rows: | |
# with self.ema_scope("Plotting Progressives"): | |
# shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length) | |
# img, progressives = self.progressive_denoising(c, | |
# shape=shape, | |
# batch_size=N) | |
# prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") | |
# log["progressive_row"] = prog_row | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.unet.parameters()) | |
if self.cond_stage_trainable: | |
print(f"{self.__class__.__name__}: Also optimizing conditioner params!") | |
params = params + list(self.cond_stage_model.parameters()) | |
if self.learn_logvar: | |
print('Diffusion model optimizing logvar') | |
params.append(self.logvar) | |
opt = torch.optim.AdamW(params, lr=lr) | |
if self.use_scheduler: | |
assert 'target' in self.scheduler_config | |
scheduler = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
scheduler = [ | |
{ | |
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
return [opt], scheduler | |
return opt | |
def on_train_batch_end(self, *args, **kwargs): | |
rate = 0.95 | |
for targ, src in zip(self.target_unet.parameters(), self.unet.parameters()): | |
targ.detach().mul_(rate).add_(src, alpha=1 - rate) | |