Spaces:
Sleeping
Sleeping
import os, glob | |
import json | |
from datetime import datetime, timezone | |
from dataclasses import dataclass | |
from datasets import load_dataset, Dataset | |
import pandas as pd | |
import gradio as gr | |
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models | |
from enum import Enum | |
OWNER = "EnergyStarAI" | |
COMPUTE_SPACE = f"{OWNER}/launch-computation-example" | |
TOKEN = os.environ.get("DEBUG") | |
API = HfApi(token=TOKEN) | |
task_mappings = {'automatic speech recognition':'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification', | |
'Image to Text':'image-to-text', 'Question Answering':'question-answering', 'Text Generation': 'text-generation', | |
'Image Classification':'image-classification', 'Sentence Similarity': 'sentence-similarity', | |
'Image Generation':'image-generation', 'Summarization':'summarization'} | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
def start_compute_space(): | |
API.restart_space(COMPUTE_SPACE) | |
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!") | |
def get_model_size(model_info: ModelInfo): | |
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | |
try: | |
model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
except (AttributeError, TypeError): | |
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
return model_size | |
def add_docker_eval(zip_file): | |
new_fid_list = zip_file.split("/") | |
new_fid = new_fid_list[-1] | |
if new_fid.endswith('.zip'): | |
API.upload_file( | |
path_or_fileobj=zip_file , | |
repo_id="EnergyStarAI/tested_proprietary_models", | |
path_in_repo='submitted_models/'+new_fid, | |
repo_type="dataset", | |
commit_message="Adding logs via submission Space.", | |
token= TOKEN | |
) | |
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.') | |
else: | |
gr.Info('You can only upload .zip files here!') | |
def add_new_eval( | |
repo_id: str, | |
task: str, | |
): | |
model_owner = repo_id.split("/")[0] | |
model_name = repo_id.split("/")[1] | |
model_list=[] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
requests= load_dataset("EnergyStarAI/requests_debug", split="test", token=TOKEN) | |
requests_dset = requests.to_pandas() | |
model_list= requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist() | |
task_models = list(API.list_models(filter=task_mappings[task])) | |
task_model_names = [m.id for m in task_models] | |
if repo_id in model_list: | |
gr.Info('This model has already been run!') | |
elif repo_id not in task_model_names: | |
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination") | |
else: | |
# Is the model info correctly filled? | |
try: | |
model_info = API.model_info(repo_id=repo_id) | |
except Exception: | |
gr.Info("Could not find information for model %s" % (model)) | |
model_size = get_model_size(model_info=model_info) | |
gr.Info("Adding request") | |
request_dict = { | |
"model": repo_id, | |
"status": "PENDING", | |
"submitted_time": pd.to_datetime(current_time), | |
"task": task, | |
"likes": model_info.likes, | |
"params": model_size, | |
"leaderboard_version": "v0",} | |
#"license": license, | |
#"private": False, | |
#} | |
print("Writing out request file to dataset") | |
df_request_dict = pd.DataFrame([request_dict]) | |
print(df_request_dict) | |
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True) | |
updated_dset =Dataset.from_pandas(df_final) | |
updated_dset.push_to_hub("EnergyStarAI/requests_debug", split="test", token=TOKEN) | |
gr.Info("Starting compute space at %s " % COMPUTE_SPACE) | |
return start_compute_space() | |
def print_existing_models(): | |
requests= load_dataset("EnergyStarAI/requests_debug", split="test", token=TOKEN) | |
requests_dset = requests.to_pandas() | |
model_df= requests_dset[['model','status']] | |
model_df = model_df[model_df['status'] == 'COMPLETED'] | |
return model_df | |
def highlight_cols(x): | |
df = x.copy() | |
df[df['status'] == 'COMPLETED'] = 'color: green' | |
df[df['status'] == 'PENDING'] = 'color: orange' | |
df[df['status'] == 'FAILED'] = 'color: red' | |
return df | |
# Applying the style function | |
existing_models = print_existing_models() | |
formatted_df = existing_models.style.apply(highlight_cols, axis = None) | |
def get_leaderboard_models(): | |
path = r'leaderboard_v0_data/energy' | |
filenames = glob.glob(path + "/*.csv") | |
data = [] | |
for filename in filenames: | |
data.append(pd.read_csv(filename)) | |
leaderboard_data = pd.concat(data, ignore_index=True) | |
return leaderboard_data[['model','task']] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Energy Score Submission Portal - v.0 (Fall 2024) π π» π") | |
gr.Markdown("### The goal of the AI Energy Score project is to develop an energy-based rating system for AI model deployment that will guide members of the community in choosing models for different tasks based on energy efficiency.", elem_classes="markdown-text") | |
gr.Markdown("### If you want us to evaluate a model hosted on the π€ Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click **Run Analysis** to launch the benchmarking process.") | |
gr.Markdown("### If you've used the [Docker file](https://github.com/huggingface/EnergyStarAI/) that we created to run your own evaluation, please submit the resulting log files at the bottom of the page.") | |
gr.Markdown("### The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.") | |
with gr.Row(): | |
with gr.Column(): | |
task = gr.Dropdown( | |
choices=task_mappings.keys(), | |
label="Choose a benchmark task", | |
value = 'Text Generation', | |
multiselect=False, | |
interactive=True, | |
) | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") | |
with gr.Row(): | |
with gr.Column(): | |
submit_button = gr.Button("Run Analysis") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
fn=add_new_eval, | |
inputs=[ | |
model_name_textbox, | |
task, | |
], | |
outputs=submission_result, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Submit log files from a Docker run:", open = False): | |
gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/EnergyStarAI/) provided, please upload the **entire run log directory** (in .zip format) below:") | |
file_output = gr.File(visible=False) | |
u = gr.UploadButton("Upload a zip file with logs", file_count="single") | |
u.upload(add_docker_eval,u, file_output) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Models that are in the latest leaderboard version:", open = False): | |
gr.Dataframe(get_leaderboard_models()) | |
with gr.Accordion("Models that have been benchmarked recently:", open = False): | |
gr.Dataframe(formatted_df) | |
demo.launch() |