Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
import plotly.express as px | |
def get_plots(task): | |
#TO DO : hover text with energy efficiency number, parameters | |
task_df= pd.read_csv('data/energy/'+task) | |
params_df = pd.read_csv('data/params/'+task) | |
all_df = pd.merge(task_df, params_df, on='Link') | |
print(all_df.head()) | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df = task_df.sort_values(by=['Total GPU Energy (Wh)']) | |
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"]) | |
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"}) | |
#fig.update_traces(mode="markers+lines", hovertemplate=None) | |
fig.update_layout(hovermode="y") | |
return fig | |
def get_model_names(task_data): | |
#TODO: add link to results in model card of each model | |
task_df= pd.read_csv(task_data) | |
model_names = task_df[['model']] | |
return model_names | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
"""# Energy Star Leaderboard | |
TODO """ | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text Generation 💬"): | |
with gr.Row(): | |
with gr.Column(): | |
#plot = gr.Plot(get_plots('text_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_generation.csv')) | |
with gr.TabItem("Image Generation 📷"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_generation.csv')) | |
with gr.TabItem("Text Classification 🎭"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_classification.csv')) | |
with gr.TabItem("Image Classification 🖼️"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_classification.csv')) | |
with gr.TabItem("Extractive QA ❔"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv')) | |
demo.launch() | |