Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
import plotly.express as px | |
def get_plots(task_data): | |
task_df= pd.read_csv(task_data) | |
task_df['total_gpu_energy (Wh)'] = task_df['total_gpu_energy']*1000 | |
task_df['energy_star'] = pd.cut(task_df['total_gpu_energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"]) | |
task_df = px.scatter(task_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"}) | |
return task_df | |
def get_model_names(task_data): | |
task_df= pd.read_csv(task_data) | |
return task_df['model'].tolist() | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
"""# Energy Star Leaderboard | |
TODO """ | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text Generation 💬"): | |
with gr.Row(): | |
animal_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Image Generation 📷"): | |
with gr.Row(): | |
science_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Text Classification 🎭"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('data/text_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('data/text_classification.csv')) | |
with gr.TabItem("Image Classification 🖼️"): | |
with gr.Row(): | |
landscape_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Extractive QA ❔"): | |
with gr.Row(): | |
wildcard_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
demo.launch() | |