sasha HF staff commited on
Commit
b7b78a8
Β·
1 Parent(s): c76229c

merging dfs

Browse files
Files changed (1) hide show
  1. app.py +18 -20
app.py CHANGED
@@ -3,13 +3,15 @@ import pandas as pd
3
  from huggingface_hub import list_models
4
  import plotly.express as px
5
 
6
- def get_plots(task_data):
7
  #TO DO : hover text with energy efficiency number, parameters
8
- task_df= pd.read_csv(task_data)
9
- task_df['Total GPU Energy (Wh)'] = task_df['total_gpu_energy']*1000
10
- task_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
11
- task_df['energy_star'] = pd.cut(task_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
12
- fig = px.scatter(task_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
 
 
13
  #fig.update_traces(mode="markers+lines", hovertemplate=None)
14
  fig.update_layout(hovermode="y")
15
  return fig
@@ -20,10 +22,6 @@ def get_model_names(task_data):
20
  model_names = task_df[['model']]
21
  return model_names
22
 
23
- def get_params(param_data):
24
- param_df= pd.read_csv(param_data)
25
- model_params = {}
26
-
27
 
28
  demo = gr.Blocks()
29
 
@@ -37,36 +35,36 @@ with demo:
37
  with gr.TabItem("Text Generation πŸ’¬"):
38
  with gr.Row():
39
  with gr.Column():
40
- plot = gr.Plot(get_plots('data/energy/text_generation.csv'))
41
  with gr.Column():
42
- table = gr.Dataframe(get_model_names('data/energy/text_generation.csv'))
43
 
44
  with gr.TabItem("Image Generation πŸ“·"):
45
  with gr.Row():
46
  with gr.Column():
47
- plot = gr.Plot(get_plots('data/energy/image_generation.csv'))
48
  with gr.Column():
49
- table = gr.Dataframe(get_model_names('data/energy/image_generation.csv'))
50
 
51
  with gr.TabItem("Text Classification 🎭"):
52
  with gr.Row():
53
  with gr.Column():
54
- plot = gr.Plot(get_plots('data/energy/text_classification.csv'))
55
  with gr.Column():
56
- table = gr.Dataframe(get_model_names('data/energy/text_classification.csv'))
57
 
58
  with gr.TabItem("Image Classification πŸ–ΌοΈ"):
59
  with gr.Row():
60
  with gr.Column():
61
- plot = gr.Plot(get_plots('data/energy/image_classification.csv'))
62
  with gr.Column():
63
- table = gr.Dataframe(get_model_names('data/energy/image_classification.csv'))
64
 
65
  with gr.TabItem("Extractive QA ❔"):
66
  with gr.Row():
67
  with gr.Column():
68
- plot = gr.Plot(get_plots('data/energy/question_answering.csv'))
69
  with gr.Column():
70
- table = gr.Dataframe(get_model_names('data/energy/question_answering.csv'))
71
 
72
  demo.launch()
 
3
  from huggingface_hub import list_models
4
  import plotly.express as px
5
 
6
+ def get_plots(task):
7
  #TO DO : hover text with energy efficiency number, parameters
8
+ task_df= pd.read_csv('data/energy/'+task)
9
+ params_df = pd.read_csv('data/params/'+task)
10
+ all_df = pd.merge(task_df, params_df, on='Link'))
11
+ all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000
12
+ all_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
13
+ all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
14
+ fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
15
  #fig.update_traces(mode="markers+lines", hovertemplate=None)
16
  fig.update_layout(hovermode="y")
17
  return fig
 
22
  model_names = task_df[['model']]
23
  return model_names
24
 
 
 
 
 
25
 
26
  demo = gr.Blocks()
27
 
 
35
  with gr.TabItem("Text Generation πŸ’¬"):
36
  with gr.Row():
37
  with gr.Column():
38
+ plot = gr.Plot(get_plots('text_generation.csv'))
39
  with gr.Column():
40
+ table = gr.Dataframe(get_model_names('text_generation.csv'))
41
 
42
  with gr.TabItem("Image Generation πŸ“·"):
43
  with gr.Row():
44
  with gr.Column():
45
+ plot = gr.Plot(get_plots('image_generation.csv'))
46
  with gr.Column():
47
+ table = gr.Dataframe(get_model_names('image_generation.csv'))
48
 
49
  with gr.TabItem("Text Classification 🎭"):
50
  with gr.Row():
51
  with gr.Column():
52
+ plot = gr.Plot(get_plots('text_classification.csv'))
53
  with gr.Column():
54
+ table = gr.Dataframe(get_model_names('text_classification.csv'))
55
 
56
  with gr.TabItem("Image Classification πŸ–ΌοΈ"):
57
  with gr.Row():
58
  with gr.Column():
59
+ plot = gr.Plot(get_plots('image_classification.csv'))
60
  with gr.Column():
61
+ table = gr.Dataframe(get_model_names('image_classification.csv'))
62
 
63
  with gr.TabItem("Extractive QA ❔"):
64
  with gr.Row():
65
  with gr.Column():
66
+ plot = gr.Plot(get_plots('question_answering.csv'))
67
  with gr.Column():
68
+ table = gr.Dataframe(get_model_names('question_answering.csv'))
69
 
70
  demo.launch()