sasha's picture
sasha HF staff
oops
ba0ef01
raw
history blame
2.15 kB
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px
def get_plots(task_data):
task_df= pd.read_csv(task_data)
task_df['total_gpu_energy (Wh)'] = task_df['total_gpu_energy']*1000
task_df['energy_star'] = pd.cut(task_df['total_gpu_energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
task_df = px.scatter(task_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
return task_df
def get_model_names(task_data):
task_df= pd.read_csv(task_data)
model_names = task_df['model'].tolist()
print(model_names)
return model_names
demo = gr.Blocks()
with demo:
gr.Markdown(
"""# Energy Star Leaderboard
TODO """
)
with gr.Tabs():
with gr.TabItem("Text Generation πŸ’¬"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Image Generation πŸ“·"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/text_classification.csv'))
with gr.TabItem("Image Classification πŸ–ΌοΈ"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
demo.launch()