Spaces:
Runtime error
Runtime error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +890 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,892 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
+
import time
|
| 4 |
import streamlit as st
|
| 5 |
+
import streamlit.components.v1 as components
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import io
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
+
import numpy as np
|
| 11 |
+
import re
|
| 12 |
+
import string
|
| 13 |
+
import json
|
| 14 |
+
from itertools import cycle
|
| 15 |
+
# --- PPTX Imports (Note: pptx must be installed via 'pip install python-pptx') ---
|
| 16 |
+
from io import BytesIO
|
| 17 |
+
import plotly.io as pio
|
| 18 |
+
# ---------------------------
|
| 19 |
+
# --- Stable Scikit-learn LDA Imports ---
|
| 20 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 21 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
| 22 |
+
# ------------------------------
|
| 23 |
+
from gliner import GLiNER
|
| 24 |
+
from streamlit_extras.stylable_container import stylable_container
|
| 25 |
+
|
| 26 |
+
# Using a try/except for comet_ml import
|
| 27 |
+
try:
|
| 28 |
+
from comet_ml import Experiment
|
| 29 |
+
except ImportError:
|
| 30 |
+
class Experiment:
|
| 31 |
+
def __init__(self, **kwargs): pass
|
| 32 |
+
def log_parameter(self, *args): pass
|
| 33 |
+
def log_table(self, *args): pass
|
| 34 |
+
def end(self): pass
|
| 35 |
+
|
| 36 |
+
# --- Model Home Directory (Fix for deployment environments) ---
|
| 37 |
+
os.environ['HF_HOME'] = '/tmp'
|
| 38 |
+
|
| 39 |
+
# --- Fixed Label Definitions and Mappings (Used as Fallback) ---
|
| 40 |
+
FIXED_LABELS = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
|
| 41 |
+
FIXED_ENTITY_COLOR_MAP = {
|
| 42 |
+
"person": "#10b981", # Green
|
| 43 |
+
"country": "#3b82f6", # Blue
|
| 44 |
+
"city": "#4ade80", # Light Green
|
| 45 |
+
"organization": "#f59e0b", # Orange
|
| 46 |
+
"date": "#8b5cf6", # Purple
|
| 47 |
+
"time": "#ec4899", # Pink
|
| 48 |
+
"cardinal": "#06b6d4", # Cyan
|
| 49 |
+
"money": "#f43f5e", # Red
|
| 50 |
+
"position": "#a855f7", # Violet
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# --- Fixed Category Mapping ---
|
| 54 |
+
FIXED_CATEGORY_MAPPING = {
|
| 55 |
+
"People & Roles": ["person", "organization", "position"],
|
| 56 |
+
"Locations": ["country", "city"],
|
| 57 |
+
"Time & Dates": ["date", "time"],
|
| 58 |
+
"Numbers & Finance": ["money", "cardinal"]}
|
| 59 |
+
REVERSE_FIXED_CATEGORY_MAPPING = {label: category for category, label_list in FIXED_CATEGORY_MAPPING.items() for label in label_list}
|
| 60 |
+
|
| 61 |
+
# --- Dynamic Color Generator for Custom Labels ---
|
| 62 |
+
# Use Plotly's Alphabet set for a large pool of distinct colors
|
| 63 |
+
COLOR_PALETTE = cycle(px.colors.qualitative.Alphabet)
|
| 64 |
+
|
| 65 |
+
def extract_label(node_name):
|
| 66 |
+
"""Extracts the label from a node string like 'Text (Label)'."""
|
| 67 |
+
match = re.search(r'\(([^)]+)\)$', node_name)
|
| 68 |
+
return match.group(1) if match else "Unknown"
|
| 69 |
+
|
| 70 |
+
def remove_trailing_punctuation(text_string):
|
| 71 |
+
"""Removes trailing punctuation from a string."""
|
| 72 |
+
return text_string.rstrip(string.punctuation)
|
| 73 |
+
|
| 74 |
+
def get_dynamic_color_map(active_labels, fixed_map):
|
| 75 |
+
"""Generates a color map, using fixed colors if available, otherwise dynamic colors."""
|
| 76 |
+
color_map = {}
|
| 77 |
+
# If using fixed labels, use the fixed map directly
|
| 78 |
+
if active_labels == FIXED_LABELS:
|
| 79 |
+
return fixed_map
|
| 80 |
+
# If using custom labels, generate colors
|
| 81 |
+
for label in active_labels:
|
| 82 |
+
# Prioritize fixed color if the custom label happens to match a fixed one
|
| 83 |
+
if label in fixed_map:
|
| 84 |
+
color_map[label] = fixed_map[label]
|
| 85 |
+
else:
|
| 86 |
+
# Generate a new color from the palette
|
| 87 |
+
color_map[label] = next(COLOR_PALETTE)
|
| 88 |
+
return color_map
|
| 89 |
+
|
| 90 |
+
def highlight_entities(text, df_entities, entity_color_map):
|
| 91 |
+
"""
|
| 92 |
+
Generates HTML to display text with entities highlighted and colored.
|
| 93 |
+
IMPORTANT: Assumes 'start' and 'end' are relative to the 'text' input.
|
| 94 |
+
"""
|
| 95 |
+
if df_entities.empty:
|
| 96 |
+
return text
|
| 97 |
+
# Sort entities by start index descending to insert highlights without affecting subsequent indices
|
| 98 |
+
entities = df_entities.sort_values(by='start', ascending=False).to_dict('records')
|
| 99 |
+
highlighted_text = text
|
| 100 |
+
for entity in entities:
|
| 101 |
+
# Ensure the entity indices are within the bounds of the full text
|
| 102 |
+
start = max(0, entity['start'])
|
| 103 |
+
end = min(len(text), entity['end'])
|
| 104 |
+
|
| 105 |
+
# Get entity text from the full document based on its indices
|
| 106 |
+
# The 'text' column in the dataframe is now an attribute of the chunked text, not the original span
|
| 107 |
+
entity_text_from_full_doc = text[start:end]
|
| 108 |
+
|
| 109 |
+
label = entity['label']
|
| 110 |
+
color = entity_color_map.get(label, '#000000')
|
| 111 |
+
# Create a span with background color and tooltip
|
| 112 |
+
highlight_html = f'<span style="background-color: {color}; color: white; padding: 2px 4px; border-radius: 3px; cursor: help;" title="{label}">{entity_text_from_full_doc}</span>'
|
| 113 |
+
# Replace the original text segment with the highlighted HTML
|
| 114 |
+
highlighted_text = highlighted_text[:start] + highlight_html + highlighted_text[end:]
|
| 115 |
+
# Use a div to mimic the Streamlit input box style for the report
|
| 116 |
+
return f'<div style="border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px;">{highlighted_text}</div>'
|
| 117 |
+
|
| 118 |
+
def perform_topic_modeling(df_entities, num_topics=2, num_top_words=10):
|
| 119 |
+
"""Performs basic Topic Modeling using LDA."""
|
| 120 |
+
documents = df_entities['text'].unique().tolist()
|
| 121 |
+
# Topic modeling is usually more effective with full sentences/paragraphs,
|
| 122 |
+
# but here we use the extracted entity texts as per the original code's intent.
|
| 123 |
+
if len(documents) < 2:
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
N = min(num_top_words, len(documents))
|
| 127 |
+
try:
|
| 128 |
+
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english', ngram_range=(1, 3))
|
| 129 |
+
tfidf = tfidf_vectorizer.fit_transform(documents)
|
| 130 |
+
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
|
| 131 |
+
|
| 132 |
+
if len(tfidf_feature_names) < num_topics:
|
| 133 |
+
tfidf_vectorizer = TfidfVectorizer(max_df=1.0, min_df=1, stop_words='english', ngram_range=(1, 3))
|
| 134 |
+
tfidf = tfidf_vectorizer.fit_transform(documents)
|
| 135 |
+
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
|
| 136 |
+
if len(tfidf_feature_names) < num_topics:
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
lda = LatentDirichletAllocation(n_components=num_topics, max_iter=5, learning_method='online', random_state=42, n_jobs=-1)
|
| 140 |
+
lda.fit(tfidf)
|
| 141 |
+
|
| 142 |
+
topic_data_list = []
|
| 143 |
+
for topic_idx, topic in enumerate(lda.components_):
|
| 144 |
+
top_words_indices = topic.argsort()[:-N - 1:-1]
|
| 145 |
+
top_words = [tfidf_feature_names[i] for i in top_words_indices]
|
| 146 |
+
word_weights = [topic[i] for i in top_words_indices]
|
| 147 |
+
|
| 148 |
+
for word, weight in zip(top_words, word_weights):
|
| 149 |
+
topic_data_list.append({
|
| 150 |
+
'Topic_ID': f'Topic #{topic_idx + 1}',
|
| 151 |
+
'Word': word,
|
| 152 |
+
'Weight': weight,
|
| 153 |
+
})
|
| 154 |
+
return pd.DataFrame(topic_data_list)
|
| 155 |
+
|
| 156 |
+
except Exception as e:
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
def create_topic_word_bubbles(df_topic_data):
|
| 160 |
+
"""Generates a Plotly Bubble Chart for top words across all topics."""
|
| 161 |
+
df_topic_data = df_topic_data.rename(columns={'Topic_ID': 'topic','Word': 'word', 'Weight': 'weight'})
|
| 162 |
+
df_topic_data['x_pos'] = df_topic_data.index
|
| 163 |
+
if df_topic_data.empty:
|
| 164 |
+
return None
|
| 165 |
+
|
| 166 |
+
fig = px.scatter(
|
| 167 |
+
df_topic_data,
|
| 168 |
+
x='x_pos', y='weight', size='weight', color='topic', text='word', hover_name='word', size_max=40,
|
| 169 |
+
title='Topic Word Weights (Bubble Chart)',
|
| 170 |
+
color_discrete_sequence=px.colors.qualitative.Bold,
|
| 171 |
+
labels={'x_pos': 'Entity/Word Index', 'weight': 'Word Weight', 'topic': 'Topic ID'},
|
| 172 |
+
custom_data=['word', 'weight', 'topic']
|
| 173 |
+
)
|
| 174 |
+
fig.update_layout(
|
| 175 |
+
xaxis_title="Entity/Word", yaxis_title="Word Weight",
|
| 176 |
+
xaxis={'showgrid': False, 'showticklabels': False, 'zeroline': False, 'showline': False},
|
| 177 |
+
yaxis={'showgrid': True},
|
| 178 |
+
showlegend=True, height=600,
|
| 179 |
+
margin=dict(t=50, b=100, l=50, r=10),
|
| 180 |
+
plot_bgcolor='#f9f9f9', paper_bgcolor='#f9f9f9'
|
| 181 |
+
)
|
| 182 |
+
fig.update_traces(
|
| 183 |
+
textposition='middle center',
|
| 184 |
+
textfont=dict(color='white', size=10),
|
| 185 |
+
hovertemplate="<b>%{customdata[0]}</b><br>Weight: %{customdata[1]:.3f}<br>Topic: %{customdata[2]}<extra></extra>",
|
| 186 |
+
marker=dict(line=dict(width=1, color='DarkSlateGrey'))
|
| 187 |
+
)
|
| 188 |
+
return fig
|
| 189 |
+
|
| 190 |
+
def generate_network_graph(df, raw_text, entity_color_map):
|
| 191 |
+
"""Generates a network graph visualization (Node Plot) with edges based on entity co-occurrence in sentences."""
|
| 192 |
+
entity_counts = df['text'].value_counts().reset_index()
|
| 193 |
+
entity_counts.columns = ['text', 'frequency']
|
| 194 |
+
unique_entities = df.drop_duplicates(subset=['text', 'label']).merge(entity_counts, on='text')
|
| 195 |
+
if unique_entities.shape[0] < 2:
|
| 196 |
+
return go.Figure().update_layout(title="Not enough unique entities for a meaningful graph.")
|
| 197 |
+
|
| 198 |
+
num_nodes = len(unique_entities)
|
| 199 |
+
thetas = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
|
| 200 |
+
radius = 10
|
| 201 |
+
unique_entities['x'] = radius * np.cos(thetas) + np.random.normal(0, 0.5, num_nodes)
|
| 202 |
+
unique_entities['y'] = radius * np.sin(thetas) + np.random.normal(0, 0.5, num_nodes)
|
| 203 |
+
pos_map = unique_entities.set_index('text')[['x', 'y']].to_dict('index')
|
| 204 |
+
edges = set()
|
| 205 |
+
# Simple sentence tokenizer
|
| 206 |
+
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s', raw_text)
|
| 207 |
+
for sentence in sentences:
|
| 208 |
+
entities_in_sentence = []
|
| 209 |
+
for entity_text in unique_entities['text'].unique():
|
| 210 |
+
# Note: This is an inexact but fast co-occurrence check
|
| 211 |
+
if entity_text.lower() in sentence.lower():
|
| 212 |
+
entities_in_sentence.append(entity_text)
|
| 213 |
+
unique_entities_in_sentence = list(set(entities_in_sentence))
|
| 214 |
+
for i in range(len(unique_entities_in_sentence)):
|
| 215 |
+
for j in range(i + 1, len(unique_entities_in_sentence)):
|
| 216 |
+
node1 = unique_entities_in_sentence[i]
|
| 217 |
+
node2 = unique_entities_in_sentence[j]
|
| 218 |
+
edge_tuple = tuple(sorted((node1, node2)))
|
| 219 |
+
edges.add(edge_tuple)
|
| 220 |
+
|
| 221 |
+
edge_x = []
|
| 222 |
+
edge_y = []
|
| 223 |
+
for edge in edges:
|
| 224 |
+
n1, n2 = edge
|
| 225 |
+
if n1 in pos_map and n2 in pos_map:
|
| 226 |
+
edge_x.extend([pos_map[n1]['x'], pos_map[n2]['x'], None])
|
| 227 |
+
edge_y.extend([pos_map[n1]['y'], pos_map[n2]['y'], None])
|
| 228 |
+
|
| 229 |
+
fig = go.Figure()
|
| 230 |
+
edge_trace = go.Scatter(x=edge_x, y=edge_y, line=dict(width=0.5, color='#888'), hoverinfo='none', mode='lines', name='Co-occurrence Edges', showlegend=False)
|
| 231 |
+
fig.add_trace(edge_trace)
|
| 232 |
+
|
| 233 |
+
fig.add_trace(go.Scatter(
|
| 234 |
+
x=unique_entities['x'], y=unique_entities['y'], mode='markers+text', name='Entities', text=unique_entities['text'], textposition="top center", showlegend=False,
|
| 235 |
+
marker=dict(
|
| 236 |
+
size=unique_entities['frequency'] * 5 + 10,
|
| 237 |
+
color=[entity_color_map.get(label, '#cccccc') for label in unique_entities['label']],
|
| 238 |
+
line_width=1, line_color='black', opacity=0.9
|
| 239 |
+
),
|
| 240 |
+
textfont=dict(size=10),
|
| 241 |
+
customdata=unique_entities[['label', 'score', 'frequency']],
|
| 242 |
+
hovertemplate=("<b>%{text}</b><br>Label: %{customdata[0]}<br>Score: %{customdata[1]:.2f}<br>Frequency: %{customdata[2]}<extra></extra>")
|
| 243 |
+
))
|
| 244 |
+
|
| 245 |
+
legend_traces = []
|
| 246 |
+
seen_labels = set()
|
| 247 |
+
for index, row in unique_entities.iterrows():
|
| 248 |
+
label = row['label']
|
| 249 |
+
if label not in seen_labels:
|
| 250 |
+
seen_labels.add(label)
|
| 251 |
+
color = entity_color_map.get(label, '#cccccc')
|
| 252 |
+
legend_traces.append(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(size=10, color=color), name=f"{label.capitalize()}", showlegend=True))
|
| 253 |
+
|
| 254 |
+
for trace in legend_traces:
|
| 255 |
+
fig.add_trace(trace)
|
| 256 |
+
|
| 257 |
+
fig.update_layout(
|
| 258 |
+
title='Entity Co-occurrence Network (Edges = Same Sentence)',
|
| 259 |
+
showlegend=True, hovermode='closest',
|
| 260 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
|
| 261 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
|
| 262 |
+
plot_bgcolor='#f9f9f9', paper_bgcolor='#f9f9f9',
|
| 263 |
+
margin=dict(t=50, b=10, l=10, r=10), height=600
|
| 264 |
+
)
|
| 265 |
+
return fig
|
| 266 |
+
|
| 267 |
+
# --- CSV GENERATION FUNCTION ---
|
| 268 |
+
def generate_entity_csv(df):
|
| 269 |
+
"""Generates a CSV file of the extracted entities in an in-memory buffer."""
|
| 270 |
+
csv_buffer = BytesIO()
|
| 271 |
+
df_export = df[['text', 'label', 'category', 'score', 'start', 'end']]
|
| 272 |
+
csv_buffer.write(df_export.to_csv(index=False).encode('utf-8'))
|
| 273 |
+
csv_buffer.seek(0)
|
| 274 |
+
return csv_buffer
|
| 275 |
+
# -----------------------------------
|
| 276 |
+
|
| 277 |
+
# --- HTML REPORT GENERATION FUNCTION (MODIFIED FOR WHITE-LABEL) ---
|
| 278 |
+
def generate_html_report(df, text_input, elapsed_time, df_topic_data, entity_color_map, report_title="Entity and Topic Analysis Report", branding_html=""):
|
| 279 |
+
"""
|
| 280 |
+
Generates a full HTML report containing all analysis results and visualizations.
|
| 281 |
+
Accepts report_title and branding_html for white-labeling.
|
| 282 |
+
"""
|
| 283 |
+
# Use the category values from the DataFrame to ensure the report matches the app's current mode (fixed or custom)
|
| 284 |
+
unique_categories = df['category'].unique()
|
| 285 |
+
|
| 286 |
+
# 1. Generate Visualizations (Plotly HTML)
|
| 287 |
+
# 1a. Treemap
|
| 288 |
+
fig_treemap = px.treemap(
|
| 289 |
+
df,
|
| 290 |
+
path=[px.Constant("All Entities"), 'category', 'label', 'text'],
|
| 291 |
+
values='score',
|
| 292 |
+
color='category',
|
| 293 |
+
title="Entity Distribution by Category and Label",
|
| 294 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
| 295 |
+
)
|
| 296 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 297 |
+
treemap_html = fig_treemap.to_html(full_html=False, include_plotlyjs='cdn')
|
| 298 |
+
|
| 299 |
+
# 1b. Pie Chart
|
| 300 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 301 |
+
grouped_counts.columns = ['Category', 'Count']
|
| 302 |
+
color_seq = px.colors.qualitative.Pastel if len(grouped_counts) > 1 else px.colors.sequential.Cividis
|
| 303 |
+
fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=color_seq)
|
| 304 |
+
fig_pie.update_layout(margin=dict(t=50, b=10))
|
| 305 |
+
pie_html = fig_pie.to_html(full_html=False, include_plotlyjs='cdn')
|
| 306 |
+
|
| 307 |
+
# 1c. Bar Chart (Category Count)
|
| 308 |
+
fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=color_seq)
|
| 309 |
+
fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
|
| 310 |
+
bar_category_html = fig_bar_category.to_html(full_html=False,include_plotlyjs='cdn')
|
| 311 |
+
|
| 312 |
+
# 1d. Bar Chart (Most Frequent Entities)
|
| 313 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 314 |
+
word_counts.columns = ['Entity', 'Count']
|
| 315 |
+
repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
|
| 316 |
+
bar_freq_html = '<p>No entities appear more than once in the text for visualization.</p>'
|
| 317 |
+
if not repeating_entities.empty:
|
| 318 |
+
fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
|
| 319 |
+
fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
|
| 320 |
+
bar_freq_html = fig_bar_freq.to_html(full_html=False, include_plotlyjs='cdn')
|
| 321 |
+
|
| 322 |
+
# 1e. Network Graph HTML - IMPORTANT: Pass color map
|
| 323 |
+
network_fig = generate_network_graph(df, text_input, entity_color_map)
|
| 324 |
+
network_html = network_fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 325 |
+
|
| 326 |
+
# 1f. Topic Charts HTML
|
| 327 |
+
topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>'
|
| 328 |
+
if df_topic_data is not None and not df_topic_data.empty:
|
| 329 |
+
bubble_figure = create_topic_word_bubbles(df_topic_data)
|
| 330 |
+
if bubble_figure:
|
| 331 |
+
topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn", config={"responsive": True})}</div>'
|
| 332 |
+
else:
|
| 333 |
+
topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>'
|
| 334 |
+
else:
|
| 335 |
+
topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">' # Changed border color
|
| 336 |
+
topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>'
|
| 337 |
+
topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>'
|
| 338 |
+
topic_charts_html += '</div>'
|
| 339 |
+
|
| 340 |
+
# 2. Get Highlighted Text - IMPORTANT: Pass color map
|
| 341 |
+
highlighted_text_html = highlight_entities(text_input, df, entity_color_map).replace("div style", "div class='highlighted-text' style")
|
| 342 |
+
|
| 343 |
+
# 3. Entity Tables (Pandas to HTML)
|
| 344 |
+
entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html(
|
| 345 |
+
classes='table table-striped',
|
| 346 |
+
index=False
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
# 4. Construct the Final HTML (UPDATED FOR WHITE-LABELING)
|
| 350 |
+
html_content = f"""<!DOCTYPE html><html lang="en"><head>
|
| 351 |
+
<meta charset="UTF-8">
|
| 352 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 353 |
+
<title>{report_title}</title>
|
| 354 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
| 355 |
+
<style>
|
| 356 |
+
body {{ font-family: 'Inter', sans-serif; margin: 0; padding: 20px; background-color: #f4f4f9; color: #333; }}
|
| 357 |
+
.container {{ max-width: 1200px; margin: 0 auto; background-color: #ffffff; padding: 30px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }}
|
| 358 |
+
h1 {{ color: #007bff; border-bottom: 3px solid #007bff; padding-bottom: 10px; margin-top: 0; }}
|
| 359 |
+
h2 {{ color: #007bff; margin-top: 30px; border-bottom: 1px solid #ddd; padding-bottom: 5px; }}
|
| 360 |
+
h3 {{ color: #555; margin-top: 20px; }}
|
| 361 |
+
.metadata {{ background-color: #e6f0ff; padding: 15px; border-radius: 8px; margin-bottom: 20px; font-size: 0.9em; }}
|
| 362 |
+
.chart-box {{ background-color: #f9f9f9; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); min-width: 0; margin-bottom: 20px; }}
|
| 363 |
+
table {{ width: 100%; border-collapse: collapse; margin-top: 15px; }}
|
| 364 |
+
table th, table td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
|
| 365 |
+
table th {{ background-color: #f0f0f0; }}
|
| 366 |
+
.highlighted-text {{ border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px; }}
|
| 367 |
+
</style>
|
| 368 |
+
</head>
|
| 369 |
+
<body>
|
| 370 |
+
<div class="container">
|
| 371 |
+
<h1>{report_title}</h1>
|
| 372 |
+
<div class="metadata">
|
| 373 |
+
{branding_html} <!-- CUSTOM BRANDING INSERTED HERE -->
|
| 374 |
+
<p><strong>Generated on:</strong> {time.strftime('%Y-%m-%d')}</p>
|
| 375 |
+
<p><strong>Processing Time:</strong> {elapsed_time:.2f} seconds</p>
|
| 376 |
+
</div>
|
| 377 |
+
<h2>1. Analyzed Text & Extracted Entities</h2>
|
| 378 |
+
<h3>Original Text with Highlighted Entities</h3>
|
| 379 |
+
<div class="highlighted-text-container">
|
| 380 |
+
{highlighted_text_html}
|
| 381 |
+
</div>
|
| 382 |
+
<h2>2. Full Extracted Entities Table
|
| 383 |
+
</h2>
|
| 384 |
+
{entity_table_html}
|
| 385 |
+
<h2>3. Data Visualizations</h2>
|
| 386 |
+
<h3>3.1 Entity Distribution Treemap</h3>
|
| 387 |
+
<div class="chart-box">{treemap_html}</div>
|
| 388 |
+
<h3>3.2 Comparative Charts (Pie, Category Count, Frequency) - *Stacked Vertically*</h3>
|
| 389 |
+
<div class="chart-box">{pie_html}</div>
|
| 390 |
+
<div class="chart-box">{bar_category_html}</div>
|
| 391 |
+
<h3>3.3 Entity Relationship Map (Edges = Same Sentence)</h3>
|
| 392 |
+
<div class="chart-box">{network_html}</div>
|
| 393 |
+
<h2>4. Topic Modelling</h2>
|
| 394 |
+
{topic_charts_html}
|
| 395 |
+
<h3>3.4 Most Frequent Entities</h3>
|
| 396 |
+
<div class="chart-box">{bar_freq_html}</div>
|
| 397 |
+
</div>
|
| 398 |
+
</body>
|
| 399 |
+
</html>
|
| 400 |
+
"""
|
| 401 |
+
return html_content
|
| 402 |
+
# -----------------------------------
|
| 403 |
+
|
| 404 |
+
# --- CHUNKING IMPLEMENTATION FOR LARGE TEXT ---
|
| 405 |
+
def chunk_text(text, max_chunk_size=1500):
|
| 406 |
+
"""Splits text into chunks by sentence/paragraph, respecting a max size (by character count)."""
|
| 407 |
+
# Split by double newline (paragraph) or sentence-like separators
|
| 408 |
+
segments = re.split(r'(\n\n|(?<=[.!?])\s+)', text)
|
| 409 |
+
chunks = []
|
| 410 |
+
current_chunk = ""
|
| 411 |
+
current_offset = 0
|
| 412 |
+
|
| 413 |
+
for segment in segments:
|
| 414 |
+
if not segment: continue
|
| 415 |
+
|
| 416 |
+
if len(current_chunk) + len(segment) > max_chunk_size and current_chunk:
|
| 417 |
+
# Save the current chunk and its starting offset
|
| 418 |
+
chunks.append((current_chunk, current_offset))
|
| 419 |
+
current_offset += len(current_chunk)
|
| 420 |
+
current_chunk = segment
|
| 421 |
+
else:
|
| 422 |
+
current_chunk += segment
|
| 423 |
+
if current_chunk:
|
| 424 |
+
chunks.append((current_chunk, current_offset))
|
| 425 |
+
|
| 426 |
+
return chunks
|
| 427 |
+
|
| 428 |
+
def process_chunked_text(text, labels, model):
|
| 429 |
+
"""Processes large text in chunks and aggregates/offsets the entities."""
|
| 430 |
+
# GLiNER model context size can be around 1024-1500 tokens/words. We use a generous char limit.
|
| 431 |
+
# The word count limit is 10000, but we chunk around 500 words for safety/performance.
|
| 432 |
+
MAX_CHUNK_CHARS = 3500
|
| 433 |
+
|
| 434 |
+
chunks = chunk_text(text, max_chunk_size=MAX_CHUNK_CHARS)
|
| 435 |
+
all_entities = []
|
| 436 |
+
|
| 437 |
+
for chunk_text, chunk_offset in chunks:
|
| 438 |
+
# Predict entities on the small chunk
|
| 439 |
+
chunk_entities = model.predict_entities(chunk_text, labels)
|
| 440 |
+
|
| 441 |
+
# Offset the start and end indices to match the original document
|
| 442 |
+
for entity in chunk_entities:
|
| 443 |
+
entity['start'] += chunk_offset
|
| 444 |
+
entity['end'] += chunk_offset
|
| 445 |
+
all_entities.append(entity)
|
| 446 |
+
|
| 447 |
+
return all_entities
|
| 448 |
+
# -----------------------------------
|
| 449 |
+
|
| 450 |
+
# --- Page Configuration and Styling (No Sidebar) ---
|
| 451 |
+
st.set_page_config(layout="wide", page_title="NER & Topic Report App")
|
| 452 |
+
|
| 453 |
+
# --- Conditional Mobile Warning ---
|
| 454 |
+
st.markdown(
|
| 455 |
+
"""
|
| 456 |
+
<style>
|
| 457 |
+
/* CSS Media Query: Only show the content inside this selector when the screen width is 600px or less (typical mobile size) */
|
| 458 |
+
@media (max-width: 600px) {
|
| 459 |
+
#mobile-warning-container {
|
| 460 |
+
display: block; /* Show the warning container */
|
| 461 |
+
background-color: #ffcccc; /* Light red/pink background */
|
| 462 |
+
color: #cc0000; /* Dark red text */
|
| 463 |
+
padding: 10px;
|
| 464 |
+
border-radius: 5px;
|
| 465 |
+
text-align: center;
|
| 466 |
+
margin-bottom: 20px;
|
| 467 |
+
font-weight: bold;
|
| 468 |
+
border: 1px solid #cc0000;
|
| 469 |
+
}
|
| 470 |
+
}
|
| 471 |
+
/* Hide the content by default (for larger screens) */
|
| 472 |
+
@media (min-width: 601px) {
|
| 473 |
+
#mobile-warning-container {
|
| 474 |
+
display: none; /* Hide the warning container on desktop */
|
| 475 |
+
}
|
| 476 |
+
}
|
| 477 |
+
/* --- FIX: Tab Label Colors for Visibility --- */
|
| 478 |
+
[data-testid="stConfigurableTabs"] button {
|
| 479 |
+
color: #333333 !important; /* Dark gray for inactive tabs */
|
| 480 |
+
background-color: #f0f0f0; /* Light gray background for inactive tabs */
|
| 481 |
+
border: 1px solid #cccccc;
|
| 482 |
+
}
|
| 483 |
+
/* Target the ACTIVE tab label */
|
| 484 |
+
[data-testid="stConfigurableTabs"] button[aria-selected="true"] {
|
| 485 |
+
color: #FFFFFF !important; /* White text for active tab */
|
| 486 |
+
background-color: #007bff; /* Blue background for active tab */
|
| 487 |
+
border-bottom: 2px solid #007bff; /* Optional: adds an accent line */
|
| 488 |
+
}
|
| 489 |
+
/* Expander header color fix (since you overwrote it to white) */
|
| 490 |
+
.streamlit-expanderHeader {
|
| 491 |
+
color: #007bff; /* Blue text for Expander header */
|
| 492 |
+
}
|
| 493 |
+
</style>
|
| 494 |
+
<div id="mobile-warning-container">
|
| 495 |
+
⚠️ **Tip for Mobile Users:** For the best viewing experience of the charts and tables, please switch your browser to **"Desktop Site"** view.
|
| 496 |
+
</div>
|
| 497 |
+
""",
|
| 498 |
+
unsafe_allow_html=True)
|
| 499 |
+
# ----------------------------------
|
| 500 |
+
st.subheader("Entity and Topic Analysis Report Generator", divider="blue") # Changed divider from "rainbow" (often includes red/pink) to "blue"
|
| 501 |
+
# Removed st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") for white-labeling
|
| 502 |
+
|
| 503 |
+
tab1, tab2 = st.tabs(["Embed", "Important Notes"])
|
| 504 |
+
with tab1:
|
| 505 |
+
with st.expander("Embed"):
|
| 506 |
+
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 507 |
+
code = '''
|
| 508 |
+
<iframe
|
| 509 |
+
src="https://aiecosystem-dataharvest.hf.space"
|
| 510 |
+
frameborder="0"
|
| 511 |
+
width="850"
|
| 512 |
+
height="450"
|
| 513 |
+
></iframe>
|
| 514 |
+
'''
|
| 515 |
+
st.code(code, language="html")
|
| 516 |
+
|
| 517 |
+
with tab2:
|
| 518 |
+
expander = st.expander("**Important Notes**")
|
| 519 |
+
expander.markdown("""
|
| 520 |
+
**Named Entities (Fixed Mode):** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position".
|
| 521 |
+
|
| 522 |
+
**Custom Labels Mode:** You can define your own comma-separated labels (e.g., `product, symptom, client_id`) in the input box below.
|
| 523 |
+
|
| 524 |
+
**Results:** Results are compiled into a single, comprehensive **HTML report** and a **CSV file** for easy download and sharing.
|
| 525 |
+
|
| 526 |
+
**How to Use:** Type or paste your text into the text area below, then click the 'Results' button.
|
| 527 |
+
""")
|
| 528 |
+
st.markdown("For any errors or inquiries, please contact us at [info@your-company.com](mailto:info@your-company.com)") # Updated contact info
|
| 529 |
+
|
| 530 |
+
# --- Comet ML Setup (Placeholder/Conditional) ---
|
| 531 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 532 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 533 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 534 |
+
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 535 |
+
|
| 536 |
+
# --- Model Loading ---
|
| 537 |
+
@st.cache_resourced
|
| 538 |
+
def load_ner_model(labels):
|
| 539 |
+
"""Loads the GLiNER model and caches it."""
|
| 540 |
+
try:
|
| 541 |
+
# The model requires constraints (labels) to be passed during loading
|
| 542 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
|
| 543 |
+
except Exception as e:
|
| 544 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 545 |
+
st.stop()
|
| 546 |
+
|
| 547 |
+
# --- LONG DEFAULT TEXT (178 Words) ---
|
| 548 |
+
DEFAULT_TEXT = (
|
| 549 |
+
"In June 2024, the founder, Dr. Emily Carter, officially announced a new, expansive partnership between "
|
| 550 |
+
"TechSolutions Inc. and the European Space Agency (ESA). This strategic alliance represents a significant "
|
| 551 |
+
"leap forward for commercial space technology across the entire **European Union**. The agreement, finalized "
|
| 552 |
+
"on Monday in Paris, France, focuses specifically on jointly developing the next generation of the 'Astra' "
|
| 553 |
+
"software platform. This version of the **Astra** platform is critical for processing and managing the vast amounts of data being sent "
|
| 554 |
+
"back from the recent Mars rover mission. This project underscores the ESA's commitment to advancing "
|
| 555 |
+
"space capabilities within the **European Union**. The core team, including lead engineer Marcus Davies, will hold "
|
| 556 |
+
"their first collaborative workshop in Berlin, Germany, on August 15th. The community response on social "
|
| 557 |
+
"media platform X (under the username @TechCEO) was overwhelmingly positive, with many major tech "
|
| 558 |
+
"publications, including Wired Magazine, predicting a major impact on the space technology industry by the "
|
| 559 |
+
"end of the year, further strengthening the technological standing of the **European Union**. The platform is designed to be compatible with both Windows and Linux operating systems. "
|
| 560 |
+
"The initial funding, secured via a Series B round, totaled $50 million. Financial analysts from Morgan Stanley "
|
| 561 |
+
"are closely monitoring the impact on TechSolutions Inc.'s Q3 financial reports, expected to be released to the "
|
| 562 |
+
"general public by October 1st. The goal is to deploy the **Astra** v2 platform before the next solar eclipse event in 2026.")
|
| 563 |
+
# -----------------------------------
|
| 564 |
+
|
| 565 |
+
# --- Session State Initialization (CRITICAL FIX) ---
|
| 566 |
+
if 'show_results' not in st.session_state: st.session_state.show_results = False
|
| 567 |
+
if 'last_text' not in st.session_state: st.session_state.last_text = ""
|
| 568 |
+
if 'results_df' not in st.session_state: st.session_state.results_df = pd.DataFrame()
|
| 569 |
+
if 'elapsed_time' not in st.session_state: st.session_state.elapsed_time = 0.0
|
| 570 |
+
if 'topic_results' not in st.session_state: st.session_state.topic_results = None
|
| 571 |
+
if 'my_text_area' not in st.session_state: st.session_state.my_text_area = DEFAULT_TEXT
|
| 572 |
+
if 'custom_labels_input' not in st.session_state: st.session_state.custom_labels_input = ""
|
| 573 |
+
if 'active_labels_list' not in st.session_state: st.session_state.active_labels_list = FIXED_LABELS
|
| 574 |
+
if 'is_custom_mode' not in st.session_state: st.session_state.is_custom_mode = False
|
| 575 |
+
|
| 576 |
+
# --- Clear Button Function (MODIFIED) ---
|
| 577 |
+
def clear_text():
|
| 578 |
+
"""Clears the text area (sets it to an empty string) and hides results."""
|
| 579 |
+
st.session_state['my_text_area'] = ""
|
| 580 |
+
st.session_state.show_results = False
|
| 581 |
+
st.session_state.last_text = ""
|
| 582 |
+
st.session_state.results_df = pd.DataFrame()
|
| 583 |
+
st.session_state.elapsed_time = 0.0
|
| 584 |
+
st.session_state.topic_results = None
|
| 585 |
+
|
| 586 |
+
# --- Text Input and Clear Button ---
|
| 587 |
+
word_limit = 10000 # Updated to 10000
|
| 588 |
+
text = st.text_area(
|
| 589 |
+
f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter",
|
| 590 |
+
height=250,
|
| 591 |
+
key='my_text_area',
|
| 592 |
+
)
|
| 593 |
+
word_count = len(text.split())
|
| 594 |
+
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
| 595 |
+
|
| 596 |
+
# --- Custom Labels Input ---
|
| 597 |
+
custom_labels_text = st.text_area(
|
| 598 |
+
"**Optional:** Enter your own comma-separated entity labels here (e.g., `product, symptom, client_id`). Leave blank for default labels.",
|
| 599 |
+
height=60,
|
| 600 |
+
key='custom_labels_input',
|
| 601 |
+
placeholder="e.g., product, symptom, client_id" # Show placeholder after the prompt
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
# Use columns to align the buttons neatly
|
| 605 |
+
col_results, col_clear = st.columns([1, 1])
|
| 606 |
+
with col_results:
|
| 607 |
+
run_button = st.button("Results", key='run_results', use_container_width=True)
|
| 608 |
+
with col_clear:
|
| 609 |
+
st.button("Clear text", on_click=clear_text, use_container_width=True)
|
| 610 |
+
|
| 611 |
+
# --- Results Trigger and Processing (Updated Logic with Chunking) ---
|
| 612 |
+
if run_button:
|
| 613 |
+
# 1. Determine Active Labels and Mode
|
| 614 |
+
custom_labels_raw = st.session_state.custom_labels_input
|
| 615 |
+
if custom_labels_raw.strip():
|
| 616 |
+
# Sanitize and parse custom labels
|
| 617 |
+
custom_labels_list = [label.strip().lower() for label in custom_labels_raw.split(',') if label.strip()]
|
| 618 |
+
if not custom_labels_list:
|
| 619 |
+
# Fallback if user enters commas but no actual words
|
| 620 |
+
st.session_state.active_labels_list = FIXED_LABELS
|
| 621 |
+
st.session_state.is_custom_mode = False
|
| 622 |
+
st.info("No valid custom labels found. Falling back to default fixed labels.")
|
| 623 |
+
else:
|
| 624 |
+
st.session_state.active_labels_list = custom_labels_list
|
| 625 |
+
st.session_state.is_custom_mode = True
|
| 626 |
+
|
| 627 |
+
else:
|
| 628 |
+
st.session_state.active_labels_list = FIXED_LABELS
|
| 629 |
+
st.session_state.is_custom_mode = False
|
| 630 |
+
|
| 631 |
+
active_labels = st.session_state.active_labels_list
|
| 632 |
+
|
| 633 |
+
if not text.strip():
|
| 634 |
+
st.warning("Please enter some text to extract entities.")
|
| 635 |
+
st.session_state.show_results = False
|
| 636 |
+
elif word_count > word_limit:
|
| 637 |
+
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
| 638 |
+
st.session_state.show_results = False
|
| 639 |
+
else:
|
| 640 |
+
# Define a safe threshold for when to start chunking (e.g., above 500 words)
|
| 641 |
+
CHUNKING_THRESHOLD = 500
|
| 642 |
+
should_chunk = word_count > CHUNKING_THRESHOLD
|
| 643 |
+
|
| 644 |
+
mode_msg = f"{'custom' if st.session_state.is_custom_mode else 'fixed'} labels"
|
| 645 |
+
if should_chunk:
|
| 646 |
+
mode_msg += " with **chunking** for large text"
|
| 647 |
+
|
| 648 |
+
with st.spinner(f"Extracting entities using {mode_msg}...", show_time=True):
|
| 649 |
+
|
| 650 |
+
# Re-run prediction only if text or active labels have changed
|
| 651 |
+
current_settings = (text, tuple(active_labels))
|
| 652 |
+
last_settings = (st.session_state.last_text, tuple(st.session_state.get('last_active_labels', [])))
|
| 653 |
+
|
| 654 |
+
if current_settings != last_settings:
|
| 655 |
+
st.session_state.last_text = text
|
| 656 |
+
st.session_state['last_active_labels'] = active_labels
|
| 657 |
+
|
| 658 |
+
start_time = time.time()
|
| 659 |
+
|
| 660 |
+
# Load model using the determined active labels
|
| 661 |
+
model = load_ner_model(active_labels)
|
| 662 |
+
|
| 663 |
+
# --- Model Prediction & Dataframe Creation (Using Chunking if needed) ---
|
| 664 |
+
if should_chunk:
|
| 665 |
+
entities = process_chunked_text(text, active_labels, model)
|
| 666 |
+
st.info(f"Text was split into {len(chunk_text(text))} chunks for processing.")
|
| 667 |
+
else:
|
| 668 |
+
# Original logic for small texts
|
| 669 |
+
entities = model.predict_entities(text, active_labels)
|
| 670 |
+
|
| 671 |
+
elapsed_time = time.time() - start_time
|
| 672 |
+
st.session_state.elapsed_time = elapsed_time
|
| 673 |
+
|
| 674 |
+
# --- DataFrame Construction ---
|
| 675 |
+
df = pd.DataFrame(entities)
|
| 676 |
+
if df.empty:
|
| 677 |
+
st.session_state.results_df = df
|
| 678 |
+
st.session_state.topic_results = None
|
| 679 |
+
st.session_state.show_results = True
|
| 680 |
+
else:
|
| 681 |
+
# Clean up entity text (optional, but good practice)
|
| 682 |
+
df['text'] = df['text'].apply(remove_trailing_punctuation)
|
| 683 |
+
|
| 684 |
+
# Map entities to categories
|
| 685 |
+
if st.session_state.is_custom_mode:
|
| 686 |
+
# For custom labels, group everything under a single category
|
| 687 |
+
df['category'] = "User Defined Entities"
|
| 688 |
+
else:
|
| 689 |
+
# For fixed labels, use the fixed mapping
|
| 690 |
+
df['category'] = df['label'].map(REVERSE_FIXED_CATEGORY_MAPPING).fillna('Other')
|
| 691 |
+
|
| 692 |
+
# Remove duplicates for topics/frequency analysis, keeping the highest score
|
| 693 |
+
df_unique_entities = df.sort_values('score', ascending=False).drop_duplicates(subset=['text', 'label'])
|
| 694 |
+
|
| 695 |
+
# --- Topic Modeling ---
|
| 696 |
+
# We use the unique entities as input for the topic modeling
|
| 697 |
+
df_topic_data = perform_topic_modeling(df_unique_entities, num_topics=min(3, len(df_unique_entities.text.unique())), num_top_words=10)
|
| 698 |
+
|
| 699 |
+
# Update session state
|
| 700 |
+
st.session_state.results_df = df
|
| 701 |
+
st.session_state.topic_results = df_topic_data
|
| 702 |
+
st.session_state.show_results = True
|
| 703 |
+
|
| 704 |
+
else:
|
| 705 |
+
# If settings haven't changed, just show the last results
|
| 706 |
+
st.session_state.show_results = True
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
# --- Display Download Link and Results (Updated with White-Label inputs) ---
|
| 710 |
+
if st.session_state.show_results:
|
| 711 |
+
df = st.session_state.results_df
|
| 712 |
+
df_topic_data = st.session_state.topic_results
|
| 713 |
+
|
| 714 |
+
# Generate the color map based on the results DF labels
|
| 715 |
+
current_labels_in_df = df['label'].unique().tolist()
|
| 716 |
+
entity_color_map = get_dynamic_color_map(current_labels_in_df, FIXED_ENTITY_COLOR_MAP)
|
| 717 |
+
|
| 718 |
+
if df.empty:
|
| 719 |
+
st.warning("No entities were found in the provided text with the current label set.")
|
| 720 |
+
else:
|
| 721 |
+
st.subheader("Analysis Results", divider="blue")
|
| 722 |
+
|
| 723 |
+
# 1. Highlighted Text
|
| 724 |
+
st.markdown(f"### 1. Analyzed Text with Highlighted Entities ({'Custom Mode' if st.session_state.is_custom_mode else 'Fixed Mode'})")
|
| 725 |
+
st.markdown(highlight_entities(st.session_state.last_text, df, entity_color_map), unsafe_allow_html=True)
|
| 726 |
+
|
| 727 |
+
# 2. Detailed Entity Analysis Tabs
|
| 728 |
+
st.markdown("### 2. Detailed Entity Analysis")
|
| 729 |
+
tab_category_details, tab_treemap_viz = st.tabs(["📑 Entities Grouped by Category", "🗺️ Treemap Distribution"])
|
| 730 |
+
|
| 731 |
+
# Determine which categories to use for the tabs
|
| 732 |
+
if st.session_state.is_custom_mode:
|
| 733 |
+
unique_categories = ["User Defined Entities"]
|
| 734 |
+
tabs_to_show = df['label'].unique().tolist()
|
| 735 |
+
st.markdown(f"**Custom Labels Detected: {', '.join(tabs_to_show)}**")
|
| 736 |
+
else:
|
| 737 |
+
unique_categories = list(FIXED_CATEGORY_MAPPING.keys())
|
| 738 |
+
|
| 739 |
+
# --- Section 2a: Detailed Tables by Category/Label ---
|
| 740 |
+
with tab_category_details:
|
| 741 |
+
st.markdown("#### Detailed Entities Table (Grouped by Category)")
|
| 742 |
+
|
| 743 |
+
if st.session_state.is_custom_mode:
|
| 744 |
+
# In custom mode, group by the actual label since the category is just "User Defined Entities"
|
| 745 |
+
tabs_list = df['label'].unique().tolist()
|
| 746 |
+
tabs_category = st.tabs(tabs_list)
|
| 747 |
+
for label, tab in zip(tabs_list, tabs_category):
|
| 748 |
+
df_label = df[df['label'] == label][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
|
| 749 |
+
with tab:
|
| 750 |
+
st.markdown(f"##### {label.capitalize()} Entities ({len(df_label)} total)")
|
| 751 |
+
st.dataframe(
|
| 752 |
+
df_label,
|
| 753 |
+
use_container_width=True,
|
| 754 |
+
column_config={'score': st.column_config.NumberColumn(format="%.4f")}
|
| 755 |
+
)
|
| 756 |
+
else:
|
| 757 |
+
# In fixed mode, group by the category defined in FIXED_CATEGORY_MAPPING
|
| 758 |
+
tabs_category = st.tabs(unique_categories)
|
| 759 |
+
for category, tab in zip(unique_categories, tabs_category):
|
| 760 |
+
df_category = df[df['category'] == category][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
|
| 761 |
+
with tab:
|
| 762 |
+
st.markdown(f"##### {category} Entities ({len(df_category)} total)")
|
| 763 |
+
if not df_category.empty:
|
| 764 |
+
st.dataframe(
|
| 765 |
+
df_category,
|
| 766 |
+
use_container_width=True,
|
| 767 |
+
column_config={'score': st.column_config.NumberColumn(format="%.4f")}
|
| 768 |
+
)
|
| 769 |
+
else:
|
| 770 |
+
st.info(f"No entities of category **{category}** were found in the text.")
|
| 771 |
+
|
| 772 |
+
# --- INSERTED GLOSSARY HERE ---
|
| 773 |
+
with st.expander("See Glossary of tags"):
|
| 774 |
+
st.write('''- **text**: ['entity extracted from your text data']- **label**: ['label (tag) assigned to a given extracted entity (custom or fixed)']- **category**: ['the grouping category (e.g., "Locations" or "User Defined Entities")']- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']- **start**: ['index of the start of the corresponding entity']- **end**: ['index of the end of the corresponding entity']''')
|
| 775 |
+
# --- END GLOSSARY INSERTION ---
|
| 776 |
+
|
| 777 |
+
# --- Section 2b: Treemap Visualization ---
|
| 778 |
+
with tab_treemap_viz:
|
| 779 |
+
st.markdown("#### Treemap: Entity Distribution")
|
| 780 |
+
fig_treemap = px.treemap(
|
| 781 |
+
df,
|
| 782 |
+
path=[px.Constant("All Entities"), 'category', 'label', 'text'],
|
| 783 |
+
values='score',
|
| 784 |
+
color='category',
|
| 785 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
| 786 |
+
)
|
| 787 |
+
fig_treemap.update_layout(margin=dict(t=10, l=10, r=10, b=10))
|
| 788 |
+
st.plotly_chart(fig_treemap, use_container_width=True)
|
| 789 |
+
|
| 790 |
+
# --- Section 3: Comparative Charts (COMPLETED) ---
|
| 791 |
+
st.markdown("---")
|
| 792 |
+
st.markdown("### 3. Comparative Charts")
|
| 793 |
+
col1, col2, col3 = st.columns(3)
|
| 794 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 795 |
+
grouped_counts.columns = ['Category', 'Count']
|
| 796 |
+
|
| 797 |
+
# Determine color sequence for charts
|
| 798 |
+
chart_color_seq = px.colors.qualitative.Pastel if len(grouped_counts) > 1 else px.colors.sequential.Cividis
|
| 799 |
+
|
| 800 |
+
with col1: # Pie Chart
|
| 801 |
+
fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=chart_color_seq)
|
| 802 |
+
fig_pie.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350)
|
| 803 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 804 |
+
|
| 805 |
+
with col2: # Bar Chart by Category
|
| 806 |
+
st.markdown("#### Entity Count by Category")
|
| 807 |
+
fig_bar_category = px.bar(grouped_counts, x='Category', y='Count', color='Category', title='Total Entities per Category', color_discrete_sequence=chart_color_seq)
|
| 808 |
+
fig_bar_category.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350, showlegend=False)
|
| 809 |
+
st.plotly_chart(fig_bar_category, use_container_width=True)
|
| 810 |
+
|
| 811 |
+
with col3: # Bar Chart for Most Frequent Entities
|
| 812 |
+
st.markdown("#### Top 10 Most Frequent Entities")
|
| 813 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 814 |
+
word_counts.columns = ['Entity', 'Count']
|
| 815 |
+
repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
|
| 816 |
+
if not repeating_entities.empty:
|
| 817 |
+
fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count', title='Top 10 Most Frequent Entities', color='Entity', color_discrete_sequence=px.colors.sequential.Viridis)
|
| 818 |
+
fig_bar_freq.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350, showlegend=False)
|
| 819 |
+
st.plotly_chart(fig_bar_freq, use_container_width=True)
|
| 820 |
+
else:
|
| 821 |
+
st.info("No entities were repeated enough for a Top 10 frequency chart.")
|
| 822 |
+
|
| 823 |
+
# 4. Network Graph and Topic Modeling
|
| 824 |
+
st.markdown("---")
|
| 825 |
+
st.markdown("### 4. Advanced Analysis")
|
| 826 |
+
col_network, col_topic = st.columns(2)
|
| 827 |
+
|
| 828 |
+
with col_network:
|
| 829 |
+
with st.expander("🔗 Entity Co-occurrence Network Graph", expanded=True):
|
| 830 |
+
st.plotly_chart(generate_network_graph(df, st.session_state.last_text, entity_color_map), use_container_width=True)
|
| 831 |
+
|
| 832 |
+
with col_topic:
|
| 833 |
+
with st.expander("💡 Topic Modeling (LDA)", expanded=True):
|
| 834 |
+
if df_topic_data is not None and not df_topic_data.empty:
|
| 835 |
+
st.plotly_chart(create_topic_word_bubbles(df_topic_data), use_container_width=True)
|
| 836 |
+
st.markdown("This chart visualizes the key words driving the identified topics, based on extracted entities.")
|
| 837 |
+
else:
|
| 838 |
+
st.info("Topic Modeling requires at least two unique entities with a minimum frequency to perform statistical analysis.")
|
| 839 |
+
|
| 840 |
+
# --- 5. White-Label Configuration (NEW SECTION FOR CUSTOM BRANDING) ---
|
| 841 |
+
st.markdown("---")
|
| 842 |
+
st.markdown("### 5. White-Label Report Configuration 🎨")
|
| 843 |
+
|
| 844 |
+
# Set a dynamic default title based on the mode
|
| 845 |
+
default_report_title = f"{'Custom' if st.session_state.is_custom_mode else 'Fixed'} Entity Analysis Report"
|
| 846 |
+
custom_report_title = st.text_input(
|
| 847 |
+
"Report Title (for HTML Report)",
|
| 848 |
+
value=default_report_title
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
custom_branding_text = st.text_area(
|
| 852 |
+
"Custom Branding Text/HTML (Appears below title in report)",
|
| 853 |
+
value="<p>Analysis powered by **My Own Brand**.</p>",
|
| 854 |
+
help="You can use basic HTML tags like <p>, <b>, <i>, and <a href='...'>. This replaces the default branding."
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
# 6. Downloads (Updated to pass custom variables)
|
| 858 |
+
st.markdown("---")
|
| 859 |
+
st.markdown("### 6. Downloads")
|
| 860 |
+
|
| 861 |
+
col_csv, col_html = st.columns(2)
|
| 862 |
+
|
| 863 |
+
# CSV Download
|
| 864 |
+
csv_buffer = generate_entity_csv(df)
|
| 865 |
+
with col_csv:
|
| 866 |
+
st.download_button(
|
| 867 |
+
label="⬇️ Download Entities as CSV",
|
| 868 |
+
data=csv_buffer,
|
| 869 |
+
file_name="ner_entities_report.csv",
|
| 870 |
+
mime="text/csv",
|
| 871 |
+
use_container_width=True
|
| 872 |
+
)
|
| 873 |
|
| 874 |
+
# HTML Download (Passing custom white-label parameters)
|
| 875 |
+
html_content = generate_html_report(
|
| 876 |
+
df,
|
| 877 |
+
st.session_state.last_text,
|
| 878 |
+
st.session_state.elapsed_time,
|
| 879 |
+
df_topic_data,
|
| 880 |
+
entity_color_map,
|
| 881 |
+
report_title=custom_report_title, # Pass custom title
|
| 882 |
+
branding_html=custom_branding_text # Pass custom branding
|
| 883 |
+
)
|
| 884 |
+
html_bytes = html_content.encode('utf-8')
|
| 885 |
+
with col_html:
|
| 886 |
+
st.download_button(
|
| 887 |
+
label="⬇️ Download Full HTML Report",
|
| 888 |
+
data=html_bytes,
|
| 889 |
+
file_name="ner_topic_full_report.html",
|
| 890 |
+
mime="text/html",
|
| 891 |
+
use_container_width=True
|
| 892 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|