AIEcosystem's picture
Update app.py
76697bb verified
import requests
import streamlit as st
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
import time
import io
import os
from comet_ml import Experiment
import zipfile
import re
from streamlit_extras.stylable_container import stylable_container
import numpy as np
from transformers import AutoTokenizer, AutoModelForTokenClassification
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
st.subheader("Text & URL Chinese NER App", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Text & URL Chinese NER App**")
expander.write('''
**Named Entities:** This Text & URL Chinese NER App predicts eighteen (18) labels ("**CARDINAL**: cardinal number”, “**DATE**: date”, “**EVENT**: event name”, “**FAC**: facilities”, “**GPE**: geopolitical entity”, "**LANGUAGE**: language", "**LAW**: law", "**LOC**: location", "**MONEY**: money", "**NORP**: ethnic, religious, political groups", "**ORDINAL**: ordinal number", "**ORG**: organization", "**PERCENT**: percent value", "**PERSON**: person", "**PRODUCT**: product", "**QUANTITY**: quantity", "**TIME**: time", "**WORK_OF_ART**: work of art"). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Paste a URL, and then press Enter. If you type or paste text, just press Ctrl + Enter.
**Usage Limits:** You can request results up to 10 times.
**Language settings:** Please check and adjust the language settings in your computer, so the Chinese characters are handled properly in your downloaded file.
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NLP Web Apps", divider="rainbow")
st.link_button("English HTML Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/english-html-entity-finder/", type = "primary")
if 'source_type_attempts' not in st.session_state:
st.session_state['source_type_attempts'] = 0
max_attempts = 10
def clear_url_input():
st.session_state.url = ""
def clear_text_input():
st.session_state.my_text_area = ""
url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
st.button("Clear URL", on_click=clear_url_input)
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.button("Clear Text", on_click=clear_text_input)
source_type = None
input_content = None
text_to_process = None
if url:
source_type = 'url'
input_content = url
elif text:
source_type = 'text'
input_content = text
if source_type:
start_time = time.time() # Start timer here
st.subheader("Results", divider = "rainbow")
if st.session_state['source_type_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
st.stop()
st.session_state['source_type_attempts'] += 1
@st.cache_resource
def load_ner_model():
return pipeline("token-classification", model= "ckiplab/bert-base-chinese-ner", aggregation_strategy="max")
model = load_ner_model()
experiment = None
try:
if source_type == 'url':
if not url.startswith(("http://", "https://")):
st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
else:
with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
f = requests.get(url, timeout=10)
f.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
soup = BeautifulSoup(f.text, 'html.parser')
text_to_process = soup.get_text(separator=' ', strip=True)
st.divider()
st.write("**Input text content**")
st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)
elif source_type == 'text':
text_to_process = text
st.divider()
st.write("**Input text content**")
st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)
if text_to_process and len(text_to_process.strip()) > 0:
with st.spinner("Analyzing text...", show_time=True):
entities = model(text_to_process)
data = []
for entity in entities:
data.append({
'word': entity['word'],
'entity_group': entity['entity_group'],
'score': entity['score'],
'start': entity['start'], # Include start and end for download
'end': entity['end']
})
df = pd.DataFrame(data)
pattern = r'[^\w\s]'
df['word'] = df['word'].replace(pattern, '', regex=True)
df = df.replace('', 'Unknown')
st.dataframe(df)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_source_type", source_type)
experiment.log_parameter("input_content_length", len(input_content))
experiment.log_table("predicted_entities", df)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
entity_groups = {"CARDINAL": "cardinal number",
"DATE": "date",
"EVENT": "event name",
"FAC": "facilities",
"GPE": "geopolitical entity",
"LANGUAGE": "language",
"LAW": "law",
"LOC": "location",
"MONEY": "money",
"NORP": "ethnic, religious, political groups",
"ORDINAL": "ordinal number",
"ORG": "organization",
"PERCENT": "percent value",
"PERSON": "person",
"PRODUCT": "product",
"QUANTITY": "quantity",
"TIME": "time",
"WORK_OF_ART": "work of art",
}
st.subheader("Grouped entities", divider = "rainbow")
# Convert entity_groups dictionary to a list of (key, title) tuples
entity_items = list(entity_groups.items())
# Define how many tabs per row
tabs_per_row = 5
for i in range(0, len(entity_items), tabs_per_row):
current_row_entities = entity_items[i : i + tabs_per_row]
tab_titles = [item[1] for item in current_row_entities]
tabs = st.tabs(tab_titles)
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
with tabs[j]:
if entity_group_key in df["entity_group"].unique():
df_filtered = df[df["entity_group"] == entity_group_key]
st.dataframe(df_filtered, use_container_width=True)
else:
st.info(f"No '{tab_title}' entities found in the text.")
st.dataframe(pd.DataFrame({
'entity_group': [entity_group_key],
'score': [np.nan],
'word': [np.nan],
'start': [np.nan],
'end': [np.nan]
}), hide_index=True)
st.divider()
if not df.empty:
st.markdown("---")
st.subheader("Treemap", divider="rainbow")
fig = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'],
values='score', color='entity_group',
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig, use_container_width=True)
if comet_initialized and experiment:
experiment.log_figure(figure=fig, figure_name="entity_treemap")
value_counts = df['entity_group'].value_counts().reset_index()
value_counts.columns = ['entity_group', 'count']
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="rainbow")
fig1 = px.pie(value_counts, values='count', names='entity_group',
hover_data=['count'], labels={'count': 'count'},
title='Percentage of Predicted Labels')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig1, use_container_width=True)
if comet_initialized and experiment:
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
with col2:
st.subheader("Bar Chart", divider="rainbow")
fig2 = px.bar(value_counts, x="count", y="entity_group", color="entity_group",
text_auto=True, title='Occurrences of Predicted Labels')
st.plotly_chart(fig2, use_container_width=True)
if comet_initialized and experiment:
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
else:
st.warning("No entities were extracted from the provided text.")
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',]}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
if not df.empty:
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",)
st.divider()
else:
st.warning("No meaningful text found to process. Please enter a URL or text.")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
finally:
if comet_initialized and experiment:
experiment.end()
end_time = time.time() # End timer here
elapsed_time = end_time - start_time
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") # Display elapsed time
st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")