|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BERT model."""
|
|
|
|
|
|
import math
|
|
|
import os
|
|
|
import warnings
|
|
|
from dataclasses import dataclass
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
import torch
|
|
|
import torch.nn.functional as F
|
|
|
import torch.utils.checkpoint
|
|
|
import transformers
|
|
|
from mmengine.logging import MMLogger
|
|
|
from torch import Tensor, device, dtype, nn
|
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
from transformers.activations import ACT2FN
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
from transformers.file_utils import (ModelOutput, add_start_docstrings,
|
|
|
add_start_docstrings_to_model_forward,
|
|
|
replace_return_docstrings)
|
|
|
from transformers.modeling_outputs import (
|
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
|
BaseModelOutputWithPoolingAndCrossAttentions,
|
|
|
CausalLMOutputWithCrossAttentions, MaskedLMOutput,
|
|
|
MultipleChoiceModelOutput, NextSentencePredictorOutput,
|
|
|
QuestionAnsweringModelOutput, SequenceClassifierOutput,
|
|
|
TokenClassifierOutput)
|
|
|
from transformers.modeling_utils import (PreTrainedModel,
|
|
|
apply_chunking_to_forward,
|
|
|
find_pruneable_heads_and_indices,
|
|
|
prune_linear_layer)
|
|
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
_CONFIG_FOR_DOC = 'BertConfig'
|
|
|
_TOKENIZER_FOR_DOC = 'BertTokenizer'
|
|
|
|
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
|
'bert-base-uncased',
|
|
|
'bert-large-uncased',
|
|
|
'bert-base-cased',
|
|
|
'bert-large-cased',
|
|
|
'bert-base-multilingual-uncased',
|
|
|
'bert-base-multilingual-cased',
|
|
|
'bert-base-chinese',
|
|
|
'bert-base-german-cased',
|
|
|
'bert-large-uncased-whole-word-masking',
|
|
|
'bert-large-cased-whole-word-masking',
|
|
|
'bert-large-uncased-whole-word-masking-finetuned-squad',
|
|
|
'bert-large-cased-whole-word-masking-finetuned-squad',
|
|
|
'bert-base-cased-finetuned-mrpc',
|
|
|
'bert-base-german-dbmdz-cased',
|
|
|
'bert-base-german-dbmdz-uncased',
|
|
|
'cl-tohoku/bert-base-japanese',
|
|
|
'cl-tohoku/bert-base-japanese-whole-word-masking',
|
|
|
'cl-tohoku/bert-base-japanese-char',
|
|
|
'cl-tohoku/bert-base-japanese-char-whole-word-masking',
|
|
|
'TurkuNLP/bert-base-finnish-cased-v1',
|
|
|
'TurkuNLP/bert-base-finnish-uncased-v1',
|
|
|
'wietsedv/bert-base-dutch-cased',
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
class BertConfig(PretrainedConfig):
|
|
|
r"""
|
|
|
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
|
|
|
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
|
|
configuration with the defaults will yield a similar configuration to that of the BERT
|
|
|
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
|
|
|
Args:
|
|
|
vocab_size (`int`, *optional*, defaults to 30522):
|
|
|
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
|
|
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
|
Number of hidden layers in the Transformer encoder.
|
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
|
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
|
|
The dropout ratio for the attention probabilities.
|
|
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
|
|
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
|
|
The epsilon used by the layer normalization layers.
|
|
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
|
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
|
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
|
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
|
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
|
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
|
relevant if `config.is_decoder=True`.
|
|
|
classifier_dropout (`float`, *optional*):
|
|
|
The dropout ratio for the classification head.
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
```python
|
|
|
>>> from transformers import BertModel, BertConfig
|
|
|
|
|
|
>>> # Initializing a BERT bert-base-uncased style configuration
|
|
|
>>> configuration = BertConfig()
|
|
|
|
|
|
>>> # Initializing a model from the bert-base-uncased style configuration
|
|
|
>>> model = BertModel(configuration)
|
|
|
|
|
|
>>> # Accessing the model configuration
|
|
|
>>> configuration = model.config
|
|
|
```"""
|
|
|
model_type = 'bert'
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
vocab_size=30522,
|
|
|
hidden_size=768,
|
|
|
num_hidden_layers=12,
|
|
|
num_attention_heads=12,
|
|
|
intermediate_size=3072,
|
|
|
hidden_act='gelu',
|
|
|
hidden_dropout_prob=0.1,
|
|
|
attention_probs_dropout_prob=0.1,
|
|
|
max_position_embeddings=512,
|
|
|
type_vocab_size=2,
|
|
|
initializer_range=0.02,
|
|
|
layer_norm_eps=1e-12,
|
|
|
pad_token_id=0,
|
|
|
position_embedding_type='absolute',
|
|
|
use_cache=True,
|
|
|
classifier_dropout=None,
|
|
|
cross_module='ca',
|
|
|
encoder_width=768,
|
|
|
**kwargs,
|
|
|
):
|
|
|
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
|
|
|
|
|
self.vocab_size = vocab_size
|
|
|
self.hidden_size = hidden_size
|
|
|
self.num_hidden_layers = num_hidden_layers
|
|
|
self.num_attention_heads = num_attention_heads
|
|
|
self.hidden_act = hidden_act
|
|
|
self.intermediate_size = intermediate_size
|
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
self.type_vocab_size = type_vocab_size
|
|
|
self.initializer_range = initializer_range
|
|
|
self.layer_norm_eps = layer_norm_eps
|
|
|
self.position_embedding_type = position_embedding_type
|
|
|
self.use_cache = use_cache
|
|
|
self.classifier_dropout = classifier_dropout
|
|
|
self.cross_module = cross_module
|
|
|
self.encoder_width = encoder_width
|
|
|
|
|
|
|
|
|
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
|
|
"""Load tf checkpoints in a pytorch model."""
|
|
|
logger = MMLogger.get_current_instance()
|
|
|
try:
|
|
|
import re
|
|
|
|
|
|
import numpy as np
|
|
|
import tensorflow as tf
|
|
|
except ImportError:
|
|
|
logger.error(
|
|
|
'Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see '
|
|
|
'https://www.tensorflow.org/install/ for installation instructions.'
|
|
|
)
|
|
|
raise
|
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
|
logger.info('Converting TensorFlow checkpoint from {}'.format(tf_path))
|
|
|
|
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
|
names = []
|
|
|
arrays = []
|
|
|
for name, shape in init_vars:
|
|
|
logger.info('Loading TF weight {} with shape {}'.format(name, shape))
|
|
|
array = tf.train.load_variable(tf_path, name)
|
|
|
names.append(name)
|
|
|
arrays.append(array)
|
|
|
|
|
|
for name, array in zip(names, arrays):
|
|
|
name = name.split('/')
|
|
|
|
|
|
|
|
|
if any(n in [
|
|
|
'adam_v',
|
|
|
'adam_m',
|
|
|
'AdamWeightDecayOptimizer',
|
|
|
'AdamWeightDecayOptimizer_1',
|
|
|
'global_step',
|
|
|
] for n in name):
|
|
|
logger.info('Skipping {}'.format('/'.join(name)))
|
|
|
continue
|
|
|
pointer = model
|
|
|
for m_name in name:
|
|
|
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
|
|
|
scope_names = re.split(r'_(\d+)', m_name)
|
|
|
else:
|
|
|
scope_names = [m_name]
|
|
|
if scope_names[0] == 'kernel' or scope_names[0] == 'gamma':
|
|
|
pointer = getattr(pointer, 'weight')
|
|
|
elif scope_names[0] == 'output_bias' or scope_names[0] == 'beta':
|
|
|
pointer = getattr(pointer, 'bias')
|
|
|
elif scope_names[0] == 'output_weights':
|
|
|
pointer = getattr(pointer, 'weight')
|
|
|
elif scope_names[0] == 'squad':
|
|
|
pointer = getattr(pointer, 'classifier')
|
|
|
else:
|
|
|
try:
|
|
|
pointer = getattr(pointer, scope_names[0])
|
|
|
except AttributeError:
|
|
|
logger.info('Skipping {}'.format('/'.join(name)))
|
|
|
continue
|
|
|
if len(scope_names) >= 2:
|
|
|
num = int(scope_names[1])
|
|
|
pointer = pointer[num]
|
|
|
if m_name[-11:] == '_embeddings':
|
|
|
pointer = getattr(pointer, 'weight')
|
|
|
elif m_name == 'kernel':
|
|
|
array = np.transpose(array)
|
|
|
try:
|
|
|
assert (
|
|
|
pointer.shape == array.shape
|
|
|
), f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched'
|
|
|
except AssertionError as e:
|
|
|
e.args += (pointer.shape, array.shape)
|
|
|
raise
|
|
|
|
|
|
logger.info('Initialize PyTorch weight {}'.format(name))
|
|
|
pointer.data = torch.from_numpy(array)
|
|
|
return model
|
|
|
|
|
|
|
|
|
class BertEmbeddings(nn.Module):
|
|
|
"""Construct the embeddings from word, position and token_type
|
|
|
embeddings."""
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.word_embeddings = nn.Embedding(
|
|
|
config.vocab_size,
|
|
|
config.hidden_size,
|
|
|
padding_idx=config.pad_token_id)
|
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
|
|
|
config.hidden_size)
|
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
|
|
|
config.hidden_size)
|
|
|
|
|
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(
|
|
|
config.hidden_size, eps=config.layer_norm_eps)
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
|
|
|
|
|
self.register_buffer(
|
|
|
'position_ids',
|
|
|
torch.arange(config.max_position_embeddings).expand((1, -1)))
|
|
|
self.position_embedding_type = getattr(config,
|
|
|
'position_embedding_type',
|
|
|
'absolute')
|
|
|
|
|
|
self.config = config
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
inputs_embeds=None,
|
|
|
past_key_values_length=0,
|
|
|
):
|
|
|
if input_ids is not None:
|
|
|
input_shape = input_ids.size()
|
|
|
else:
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
|
|
seq_length = input_shape[1]
|
|
|
|
|
|
if position_ids is None:
|
|
|
position_ids = self.position_ids[:, past_key_values_length:
|
|
|
seq_length +
|
|
|
past_key_values_length]
|
|
|
|
|
|
if token_type_ids is None:
|
|
|
token_type_ids = torch.zeros(
|
|
|
input_shape, dtype=torch.long, device=self.position_ids.device)
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
|
|
|
embeddings = inputs_embeds + token_type_embeddings
|
|
|
if self.position_embedding_type == 'absolute':
|
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
embeddings += position_embeddings
|
|
|
embeddings = self.LayerNorm(embeddings)
|
|
|
embeddings = self.dropout(embeddings)
|
|
|
return embeddings
|
|
|
|
|
|
|
|
|
class BertSelfAttention(nn.Module):
|
|
|
|
|
|
def __init__(self, config, is_cross_attention):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
|
|
config, 'embedding_size'):
|
|
|
raise ValueError(
|
|
|
'The hidden size (%d) is not a multiple of the number of attention '
|
|
|
'heads (%d)' %
|
|
|
(config.hidden_size, config.num_attention_heads))
|
|
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
|
self.attention_head_size = int(config.hidden_size /
|
|
|
config.num_attention_heads)
|
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
if is_cross_attention:
|
|
|
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
|
|
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
|
|
else:
|
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
self.position_embedding_type = getattr(config,
|
|
|
'position_embedding_type',
|
|
|
'absolute')
|
|
|
if (self.position_embedding_type == 'relative_key'
|
|
|
or self.position_embedding_type == 'relative_key_query'):
|
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
|
self.distance_embedding = nn.Embedding(
|
|
|
2 * config.max_position_embeddings - 1,
|
|
|
self.attention_head_size)
|
|
|
self.save_attention = False
|
|
|
|
|
|
def save_attn_gradients(self, attn_gradients):
|
|
|
self.attn_gradients = attn_gradients
|
|
|
|
|
|
def get_attn_gradients(self):
|
|
|
return self.attn_gradients
|
|
|
|
|
|
def save_attention_map(self, attention_map):
|
|
|
self.attention_map = attention_map
|
|
|
|
|
|
def get_attention_map(self):
|
|
|
return self.attention_map
|
|
|
|
|
|
def transpose_for_scores(self, x):
|
|
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads,
|
|
|
self.attention_head_size)
|
|
|
x = x.view(*new_x_shape)
|
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
past_key_value=None,
|
|
|
output_attentions=False,
|
|
|
):
|
|
|
mixed_query_layer = self.query(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None
|
|
|
|
|
|
if is_cross_attention:
|
|
|
key_layer = self.transpose_for_scores(
|
|
|
self.key(encoder_hidden_states))
|
|
|
value_layer = self.transpose_for_scores(
|
|
|
self.value(encoder_hidden_states))
|
|
|
attention_mask = encoder_attention_mask
|
|
|
elif past_key_value is not None:
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
|
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
|
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
|
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
|
|
else:
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
|
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
|
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
|
|
|
|
past_key_value = (key_layer, value_layer)
|
|
|
|
|
|
|
|
|
attention_scores = torch.matmul(query_layer,
|
|
|
key_layer.transpose(-1, -2))
|
|
|
|
|
|
if (self.position_embedding_type == 'relative_key'
|
|
|
or self.position_embedding_type == 'relative_key_query'):
|
|
|
seq_length = hidden_states.size()[1]
|
|
|
position_ids_l = torch.arange(
|
|
|
seq_length, dtype=torch.long,
|
|
|
device=hidden_states.device).view(-1, 1)
|
|
|
position_ids_r = torch.arange(
|
|
|
seq_length, dtype=torch.long,
|
|
|
device=hidden_states.device).view(1, -1)
|
|
|
distance = position_ids_l - position_ids_r
|
|
|
positional_embedding = self.distance_embedding(
|
|
|
distance + self.max_position_embeddings - 1)
|
|
|
positional_embedding = positional_embedding.to(
|
|
|
dtype=query_layer.dtype)
|
|
|
|
|
|
if self.position_embedding_type == 'relative_key':
|
|
|
relative_position_scores = torch.einsum(
|
|
|
'bhld,lrd->bhlr', query_layer, positional_embedding)
|
|
|
attention_scores = attention_scores + relative_position_scores
|
|
|
elif self.position_embedding_type == 'relative_key_query':
|
|
|
relative_position_scores_query = torch.einsum(
|
|
|
'bhld,lrd->bhlr', query_layer, positional_embedding)
|
|
|
relative_position_scores_key = torch.einsum(
|
|
|
'bhrd,lrd->bhlr', key_layer, positional_embedding)
|
|
|
attention_scores = (
|
|
|
attention_scores + relative_position_scores_query +
|
|
|
relative_position_scores_key)
|
|
|
|
|
|
attention_scores = attention_scores / math.sqrt(
|
|
|
self.attention_head_size)
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
|
|
|
|
|
if is_cross_attention and self.save_attention:
|
|
|
self.save_attention_map(attention_probs)
|
|
|
attention_probs.register_hook(self.save_attn_gradients)
|
|
|
|
|
|
|
|
|
|
|
|
attention_probs_dropped = self.dropout(attention_probs)
|
|
|
|
|
|
|
|
|
if head_mask is not None:
|
|
|
attention_probs_dropped = attention_probs_dropped * head_mask
|
|
|
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
|
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (
|
|
|
self.all_head_size, )
|
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
|
|
|
|
|
outputs = ((context_layer, attention_probs,
|
|
|
attention_scores) if output_attentions else
|
|
|
(context_layer, ))
|
|
|
|
|
|
outputs = outputs + (past_key_value, )
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
class BertSelfOutput(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
|
self.LayerNorm = nn.LayerNorm(
|
|
|
config.hidden_size, eps=config.layer_norm_eps)
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
|
hidden_states = self.dense(hidden_states)
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class BertAttention(nn.Module):
|
|
|
|
|
|
def __init__(self, config, is_cross_attention=False):
|
|
|
super().__init__()
|
|
|
|
|
|
self.self = BertSelfAttention(config, is_cross_attention)
|
|
|
|
|
|
self.output = BertSelfOutput(config)
|
|
|
self.pruned_heads = set()
|
|
|
|
|
|
def prune_heads(self, heads):
|
|
|
if len(heads) == 0:
|
|
|
return
|
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
|
heads,
|
|
|
self.self.num_attention_heads,
|
|
|
self.self.attention_head_size,
|
|
|
self.pruned_heads,
|
|
|
)
|
|
|
|
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index)
|
|
|
self.self.key = prune_linear_layer(self.self.key, index)
|
|
|
self.self.value = prune_linear_layer(self.self.value, index)
|
|
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
|
|
|
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(
|
|
|
heads)
|
|
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
past_key_value=None,
|
|
|
output_attentions=False,
|
|
|
):
|
|
|
self_outputs = self.self(
|
|
|
hidden_states,
|
|
|
attention_mask,
|
|
|
head_mask,
|
|
|
encoder_hidden_states,
|
|
|
encoder_attention_mask,
|
|
|
past_key_value,
|
|
|
output_attentions,
|
|
|
)
|
|
|
attention_output = self.output(self_outputs[0], hidden_states)
|
|
|
|
|
|
outputs = (attention_output, ) + self_outputs[1:]
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
class BertIntermediate(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
|
if isinstance(config.hidden_act, str):
|
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
|
else:
|
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
hidden_states = self.dense(hidden_states)
|
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class BertOutput(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
self.LayerNorm = nn.LayerNorm(
|
|
|
config.hidden_size, eps=config.layer_norm_eps)
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
|
hidden_states = self.dense(hidden_states)
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class BertLayer(nn.Module):
|
|
|
|
|
|
def __init__(self, config, layer_num):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
|
self.seq_len_dim = 1
|
|
|
self.attention = BertAttention(config)
|
|
|
|
|
|
self.has_cross_attention = layer_num >= config.fusion_layer
|
|
|
if self.has_cross_attention:
|
|
|
self.crossattention = BertAttention(
|
|
|
config, is_cross_attention=True)
|
|
|
self.intermediate = BertIntermediate(config)
|
|
|
self.output = BertOutput(config)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
past_key_value=None,
|
|
|
output_attentions=False,
|
|
|
):
|
|
|
|
|
|
self_attn_past_key_value = past_key_value[:
|
|
|
2] if past_key_value is not None else None
|
|
|
self_attention_outputs = self.attention(
|
|
|
hidden_states,
|
|
|
attention_mask,
|
|
|
head_mask,
|
|
|
output_attentions=output_attentions,
|
|
|
past_key_value=self_attn_past_key_value,
|
|
|
)
|
|
|
attention_output = self_attention_outputs[0]
|
|
|
|
|
|
outputs = self_attention_outputs[1:-1]
|
|
|
present_key_value = self_attention_outputs[-1]
|
|
|
|
|
|
if self.has_cross_attention:
|
|
|
assert (
|
|
|
encoder_hidden_states is not None
|
|
|
), 'encoder_hidden_states must be given for cross-attention layers'
|
|
|
|
|
|
if type(encoder_hidden_states) == list:
|
|
|
cross_attention_outputs = self.crossattention(
|
|
|
attention_output,
|
|
|
attention_mask,
|
|
|
head_mask,
|
|
|
encoder_hidden_states[(self.layer_num -
|
|
|
self.config.fusion_layer) %
|
|
|
len(encoder_hidden_states)],
|
|
|
encoder_attention_mask[(self.layer_num -
|
|
|
self.config.fusion_layer) %
|
|
|
len(encoder_hidden_states)],
|
|
|
output_attentions=output_attentions,
|
|
|
)
|
|
|
attention_output = cross_attention_outputs[0]
|
|
|
outputs = outputs + cross_attention_outputs[1:-1]
|
|
|
|
|
|
else:
|
|
|
cross_attention_outputs = self.crossattention(
|
|
|
attention_output,
|
|
|
attention_mask,
|
|
|
head_mask,
|
|
|
encoder_hidden_states,
|
|
|
encoder_attention_mask,
|
|
|
output_attentions=output_attentions,
|
|
|
)
|
|
|
attention_output = cross_attention_outputs[0]
|
|
|
|
|
|
outputs = outputs + cross_attention_outputs[1:-1]
|
|
|
layer_output = apply_chunking_to_forward(
|
|
|
self.feed_forward_chunk,
|
|
|
self.chunk_size_feed_forward,
|
|
|
self.seq_len_dim,
|
|
|
attention_output,
|
|
|
)
|
|
|
outputs = (layer_output, ) + outputs
|
|
|
|
|
|
outputs = outputs + (present_key_value, )
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
def feed_forward_chunk(self, attention_output):
|
|
|
intermediate_output = self.intermediate(attention_output)
|
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
|
return layer_output
|
|
|
|
|
|
|
|
|
class BertEncoder(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
self.layer = nn.ModuleList(
|
|
|
[BertLayer(config, i) for i in range(config.num_hidden_layers)])
|
|
|
logger = MMLogger.get_current_instance()
|
|
|
logger.info(f'build bert with cross_module: {config.cross_module}')
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
past_key_values=None,
|
|
|
use_cache=None,
|
|
|
output_attentions=False,
|
|
|
output_hidden_states=False,
|
|
|
return_dict=True,
|
|
|
mode='multi_modal',
|
|
|
normalize_attention=True,
|
|
|
):
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
|
|
all_cross_attentions = () if output_attentions else None
|
|
|
|
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
|
|
if (mode == 'text' or mode == 'temporal'
|
|
|
):
|
|
|
start_layer = 0
|
|
|
output_layer = self.config.fusion_layer
|
|
|
|
|
|
elif mode == 'fusion':
|
|
|
start_layer = self.config.fusion_layer
|
|
|
output_layer = self.config.num_hidden_layers
|
|
|
|
|
|
elif mode == 'multi_modal':
|
|
|
start_layer = 0
|
|
|
output_layer = self.config.num_hidden_layers
|
|
|
|
|
|
for i in range(start_layer, output_layer):
|
|
|
layer_module = self.layer[i]
|
|
|
if output_hidden_states:
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
|
|
past_key_value = past_key_values[
|
|
|
i] if past_key_values is not None else None
|
|
|
|
|
|
if getattr(self.config, 'gradient_checkpointing',
|
|
|
False) and self.training:
|
|
|
|
|
|
if use_cache:
|
|
|
logger = MMLogger.get_current_instance()
|
|
|
logger.warn(
|
|
|
'`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting '
|
|
|
'`use_cache=False`...')
|
|
|
use_cache = False
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
|
|
def custom_forward(*inputs):
|
|
|
return module(*inputs, past_key_value,
|
|
|
output_attentions)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(layer_module),
|
|
|
hidden_states,
|
|
|
attention_mask,
|
|
|
layer_head_mask,
|
|
|
encoder_hidden_states,
|
|
|
encoder_attention_mask,
|
|
|
use_reentrant=False,
|
|
|
)
|
|
|
else:
|
|
|
layer_outputs = layer_module(
|
|
|
hidden_states,
|
|
|
attention_mask,
|
|
|
layer_head_mask,
|
|
|
encoder_hidden_states,
|
|
|
encoder_attention_mask,
|
|
|
past_key_value,
|
|
|
output_attentions,
|
|
|
)
|
|
|
hidden_states = layer_outputs[0]
|
|
|
if use_cache:
|
|
|
next_decoder_cache += (layer_outputs[-1], )
|
|
|
if output_attentions:
|
|
|
|
|
|
|
|
|
offset = int(normalize_attention)
|
|
|
|
|
|
all_self_attentions = all_self_attentions + (
|
|
|
layer_outputs[2 - offset], )
|
|
|
if hasattr(layer_module, 'crossattention'):
|
|
|
|
|
|
all_cross_attentions = all_cross_attentions + (
|
|
|
layer_outputs[4 - offset], )
|
|
|
|
|
|
if output_hidden_states:
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
if not return_dict:
|
|
|
return tuple(v for v in [
|
|
|
hidden_states,
|
|
|
next_decoder_cache,
|
|
|
all_hidden_states,
|
|
|
all_self_attentions,
|
|
|
all_cross_attentions,
|
|
|
] if v is not None)
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
last_hidden_state=hidden_states,
|
|
|
past_key_values=next_decoder_cache,
|
|
|
hidden_states=all_hidden_states,
|
|
|
attentions=all_self_attentions,
|
|
|
cross_attentions=all_cross_attentions,
|
|
|
)
|
|
|
|
|
|
|
|
|
class BertPooler(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
|
self.activation = nn.Tanh()
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
|
|
|
|
|
first_token_tensor = hidden_states[:, 0]
|
|
|
pooled_output = self.dense(first_token_tensor)
|
|
|
pooled_output = self.activation(pooled_output)
|
|
|
return pooled_output
|
|
|
|
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
|
if isinstance(config.hidden_act, str):
|
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
|
else:
|
|
|
self.transform_act_fn = config.hidden_act
|
|
|
self.LayerNorm = nn.LayerNorm(
|
|
|
config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
hidden_states = self.dense(hidden_states)
|
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class BertLMPredictionHead(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.transform = BertPredictionHeadTransform(config)
|
|
|
|
|
|
|
|
|
|
|
|
self.decoder = nn.Linear(
|
|
|
config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
|
|
|
|
|
|
|
|
self.decoder.bias = self.bias
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
hidden_states = self.transform(hidden_states)
|
|
|
hidden_states = self.decoder(hidden_states)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class BertOnlyMLMHead(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.predictions = BertLMPredictionHead(config)
|
|
|
|
|
|
def forward(self, sequence_output):
|
|
|
prediction_scores = self.predictions(sequence_output)
|
|
|
return prediction_scores
|
|
|
|
|
|
|
|
|
class BertOnlyNSPHead(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
|
|
|
|
|
def forward(self, pooled_output):
|
|
|
seq_relationship_score = self.seq_relationship(pooled_output)
|
|
|
return seq_relationship_score
|
|
|
|
|
|
|
|
|
class BertPreTrainingHeads(nn.Module):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.predictions = BertLMPredictionHead(config)
|
|
|
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
|
|
|
|
|
def forward(self, sequence_output, pooled_output):
|
|
|
prediction_scores = self.predictions(sequence_output)
|
|
|
seq_relationship_score = self.seq_relationship(pooled_output)
|
|
|
return prediction_scores, seq_relationship_score
|
|
|
|
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel):
|
|
|
"""An abstract class to handle weights initialization and a simple
|
|
|
interface for downloading and loading pretrained models."""
|
|
|
|
|
|
config_class = BertConfig
|
|
|
load_tf_weights = load_tf_weights_in_bert
|
|
|
base_model_prefix = 'bert'
|
|
|
_keys_to_ignore_on_load_missing = [r'position_ids']
|
|
|
|
|
|
def _init_weights(self, module):
|
|
|
"""Initialize the weights."""
|
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
|
|
|
|
|
|
|
module.weight.data.normal_(
|
|
|
mean=0.0, std=self.config.initializer_range)
|
|
|
elif isinstance(module, nn.LayerNorm):
|
|
|
module.bias.data.zero_()
|
|
|
module.weight.data.fill_(1.0)
|
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
|
module.bias.data.zero_()
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class BertForPreTrainingOutput(ModelOutput):
|
|
|
"""Output type of :class:`~transformers.BertForPreTraining`.
|
|
|
|
|
|
Args:
|
|
|
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
|
|
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
|
|
(classification) loss.
|
|
|
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
|
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
|
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
|
|
before SoftMax).
|
|
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
|
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
|
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
|
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
|
|
sequence_length, sequence_length)`.
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
|
heads.
|
|
|
"""
|
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
|
prediction_logits: torch.FloatTensor = None
|
|
|
seq_relationship_logits: torch.FloatTensor = None
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
|
|
|
|
|
|
BERT_START_DOCSTRING = r"""
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
|
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
|
|
pruning heads etc.)
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
|
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
|
|
general usage and behavior.
|
|
|
Parameters:
|
|
|
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
|
|
weights.
|
|
|
"""
|
|
|
|
|
|
BERT_INPUTS_DOCSTRING = r"""
|
|
|
Args:
|
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
|
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
|
|
details.
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__
|
|
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
- 0 for tokens that are **masked**.
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
|
|
1]``:
|
|
|
- 0 corresponds to a `sentence A` token,
|
|
|
- 1 corresponds to a `sentence B` token.
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
|
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
|
|
config.max_position_embeddings - 1]``.
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_
|
|
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
- 0 indicates the head is **masked**.
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
|
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
|
|
vectors than the model's internal embedding lookup matrix.
|
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
|
|
tensors for more detail.
|
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
|
|
more detail.
|
|
|
return_dict (:obj:`bool`, `optional`):
|
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
|
"""
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
'The bare Bert Model transformer outputting raw hidden-states without any specific head on top.',
|
|
|
BERT_START_DOCSTRING,
|
|
|
)
|
|
|
class BertModel(BertPreTrainedModel):
|
|
|
"""The model can behave as an encoder (with only self-attention) as well as
|
|
|
a decoder, in which case a layer of cross-attention is added between the
|
|
|
self-attention layers, following the architecture described in `Attention
|
|
|
is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani,
|
|
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
|
|
|
|
|
|
Gomez, Lukasz Kaiser and Illia Polosukhin. argument and
|
|
|
:obj:`add_cross_attention` set to :obj:`True`; an
|
|
|
:obj:`encoder_hidden_states` is then expected as an input to the forward
|
|
|
pass.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, config, add_pooling_layer=True):
|
|
|
super().__init__(config)
|
|
|
self.config = config
|
|
|
|
|
|
self.embeddings = BertEmbeddings(config)
|
|
|
|
|
|
self.encoder = BertEncoder(config)
|
|
|
|
|
|
self.pooler = BertPooler(config) if add_pooling_layer else None
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
return self.embeddings.word_embeddings
|
|
|
|
|
|
def set_input_embeddings(self, value):
|
|
|
self.embeddings.word_embeddings = value
|
|
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
|
"""Prunes heads of the model.
|
|
|
|
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
|
class PreTrainedModel
|
|
|
"""
|
|
|
for layer, heads in heads_to_prune.items():
|
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
|
|
def get_extended_attention_mask(self, attention_mask: Tensor,
|
|
|
input_shape: Tuple[int], device: device,
|
|
|
is_decoder: bool) -> Tensor:
|
|
|
"""Makes broadcastable attention and causal masks so that future and
|
|
|
masked tokens are ignored.
|
|
|
|
|
|
Arguments:
|
|
|
attention_mask (:obj:`torch.Tensor`):
|
|
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
|
|
input_shape (:obj:`Tuple[int]`):
|
|
|
The shape of the input to the model.
|
|
|
device: (:obj:`torch.device`):
|
|
|
The device of the input to the model.
|
|
|
|
|
|
Returns:
|
|
|
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
|
|
"""
|
|
|
|
|
|
|
|
|
if attention_mask.dim() == 3:
|
|
|
extended_attention_mask = attention_mask[:, None, :, :]
|
|
|
elif attention_mask.dim() == 2:
|
|
|
|
|
|
|
|
|
|
|
|
if is_decoder:
|
|
|
batch_size, seq_length = input_shape
|
|
|
seq_ids = torch.arange(seq_length, device=device)
|
|
|
causal_mask = (
|
|
|
seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <=
|
|
|
seq_ids[None, :, None])
|
|
|
|
|
|
|
|
|
causal_mask = causal_mask.to(attention_mask.dtype)
|
|
|
|
|
|
if causal_mask.shape[1] < attention_mask.shape[1]:
|
|
|
prefix_seq_len = attention_mask.shape[
|
|
|
1] - causal_mask.shape[1]
|
|
|
causal_mask = torch.cat(
|
|
|
[
|
|
|
torch.ones(
|
|
|
(batch_size, seq_length, prefix_seq_len),
|
|
|
device=device,
|
|
|
dtype=causal_mask.dtype,
|
|
|
),
|
|
|
causal_mask,
|
|
|
],
|
|
|
axis=-1,
|
|
|
)
|
|
|
|
|
|
extended_attention_mask = (
|
|
|
causal_mask[:, None, :, :] *
|
|
|
attention_mask[:, None, None, :])
|
|
|
else:
|
|
|
extended_attention_mask = attention_mask[:, None, None, :]
|
|
|
else:
|
|
|
raise ValueError(
|
|
|
'Wrong shape for input_ids (shape {}) or attention_mask (shape {})'
|
|
|
.format(input_shape, attention_mask.shape))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(
|
|
|
dtype=self.dtype)
|
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
|
|
return extended_attention_mask
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
encoder_embeds=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
past_key_values=None,
|
|
|
use_cache=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
is_decoder=False,
|
|
|
mode='multi_modal',
|
|
|
normalize_attention=True,
|
|
|
):
|
|
|
r"""
|
|
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
|
the model is configured as a decoder.
|
|
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
- 0 for tokens that are **masked**.
|
|
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
|
|
use_cache (:obj:`bool`, `optional`):
|
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
|
decoding (see :obj:`past_key_values`).
|
|
|
"""
|
|
|
output_attentions = (
|
|
|
output_attentions if output_attentions is not None else
|
|
|
self.config.output_attentions)
|
|
|
output_hidden_states = (
|
|
|
output_hidden_states if output_hidden_states is not None else
|
|
|
self.config.output_hidden_states)
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if is_decoder:
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
else:
|
|
|
use_cache = False
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
raise ValueError(
|
|
|
'You cannot specify both input_ids and inputs_embeds at the same time'
|
|
|
)
|
|
|
elif input_ids is not None:
|
|
|
input_shape = input_ids.size()
|
|
|
batch_size, seq_length = input_shape
|
|
|
device = input_ids.device
|
|
|
elif inputs_embeds is not None:
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
batch_size, seq_length = input_shape
|
|
|
device = inputs_embeds.device
|
|
|
elif encoder_embeds is not None:
|
|
|
input_shape = encoder_embeds.size()[:-1]
|
|
|
batch_size, seq_length = input_shape
|
|
|
device = encoder_embeds.device
|
|
|
else:
|
|
|
raise ValueError(
|
|
|
'You have to specify either input_ids or inputs_embeds or encoder_embeds'
|
|
|
)
|
|
|
|
|
|
|
|
|
past_key_values_length = (
|
|
|
past_key_values[0][0].shape[2]
|
|
|
if past_key_values is not None else 0)
|
|
|
|
|
|
if attention_mask is None:
|
|
|
attention_mask = torch.ones(
|
|
|
((batch_size, seq_length + past_key_values_length)),
|
|
|
device=device)
|
|
|
if token_type_ids is None:
|
|
|
token_type_ids = torch.zeros(
|
|
|
input_shape, dtype=torch.long, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
|
|
attention_mask, input_shape, device, is_decoder)
|
|
|
|
|
|
|
|
|
|
|
|
if encoder_hidden_states is not None:
|
|
|
if type(encoder_hidden_states) == list:
|
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
|
|
0].size()
|
|
|
else:
|
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size(
|
|
|
)
|
|
|
encoder_hidden_shape = (encoder_batch_size,
|
|
|
encoder_sequence_length)
|
|
|
|
|
|
if type(encoder_attention_mask) == list:
|
|
|
encoder_extended_attention_mask = [
|
|
|
self.invert_attention_mask(mask)
|
|
|
for mask in encoder_attention_mask
|
|
|
]
|
|
|
elif encoder_attention_mask is None:
|
|
|
encoder_attention_mask = torch.ones(
|
|
|
encoder_hidden_shape, device=device)
|
|
|
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
|
encoder_attention_mask)
|
|
|
else:
|
|
|
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
|
encoder_attention_mask)
|
|
|
else:
|
|
|
encoder_extended_attention_mask = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask,
|
|
|
self.config.num_hidden_layers)
|
|
|
|
|
|
if encoder_embeds is None:
|
|
|
embedding_output = self.embeddings(
|
|
|
input_ids=input_ids,
|
|
|
position_ids=position_ids,
|
|
|
token_type_ids=token_type_ids,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
past_key_values_length=past_key_values_length,
|
|
|
)
|
|
|
else:
|
|
|
embedding_output = encoder_embeds
|
|
|
|
|
|
encoder_outputs = self.encoder(
|
|
|
embedding_output,
|
|
|
attention_mask=extended_attention_mask,
|
|
|
head_mask=head_mask,
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
|
past_key_values=past_key_values,
|
|
|
use_cache=use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict,
|
|
|
mode=mode,
|
|
|
normalize_attention=normalize_attention,
|
|
|
)
|
|
|
sequence_output = encoder_outputs[0]
|
|
|
pooled_output = self.pooler(
|
|
|
sequence_output) if self.pooler is not None else None
|
|
|
|
|
|
if not return_dict:
|
|
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
|
|
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions(
|
|
|
last_hidden_state=sequence_output,
|
|
|
pooler_output=pooled_output,
|
|
|
past_key_values=encoder_outputs.past_key_values,
|
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
|
attentions=encoder_outputs.attentions,
|
|
|
cross_attentions=encoder_outputs.cross_attentions,
|
|
|
)
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
"""
|
|
|
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
|
|
sentence prediction (classification)` head.
|
|
|
""",
|
|
|
BERT_START_DOCSTRING,
|
|
|
)
|
|
|
class BertForPreTraining(BertPreTrainedModel):
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__(config)
|
|
|
|
|
|
self.bert = BertModel(config)
|
|
|
self.cls = BertPreTrainingHeads(config)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
return self.cls.predictions.decoder
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
|
self.cls.predictions.decoder = new_embeddings
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
|
BERT_INPUTS_DOCSTRING.format('batch_size, sequence_length'))
|
|
|
@replace_return_docstrings(
|
|
|
output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
labels=None,
|
|
|
next_sentence_label=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
):
|
|
|
r"""
|
|
|
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`):
|
|
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
|
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
|
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
|
|
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
|
|
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
|
|
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:
|
|
|
- 0 indicates sequence B is a continuation of sequence A,
|
|
|
- 1 indicates sequence B is a random sequence.
|
|
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
|
|
Used to hide legacy arguments that have been deprecated.
|
|
|
Returns:
|
|
|
Example::
|
|
|
>>> from transformers import BertTokenizer, BertForPreTraining
|
|
|
>>> import torch
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
|
|
>>> outputs = model(**inputs)
|
|
|
>>> prediction_logits = outputs.prediction_logits
|
|
|
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
|
|
"""
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.bert(
|
|
|
input_ids,
|
|
|
attention_mask=attention_mask,
|
|
|
token_type_ids=token_type_ids,
|
|
|
position_ids=position_ids,
|
|
|
head_mask=head_mask,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict,
|
|
|
)
|
|
|
|
|
|
sequence_output, pooled_output = outputs[:2]
|
|
|
prediction_scores, seq_relationship_score = self.cls(
|
|
|
sequence_output, pooled_output)
|
|
|
|
|
|
total_loss = None
|
|
|
if labels is not None and next_sentence_label is not None:
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
masked_lm_loss = loss_fct(
|
|
|
prediction_scores.view(-1, self.config.vocab_size),
|
|
|
labels.view(-1))
|
|
|
next_sentence_loss = loss_fct(
|
|
|
seq_relationship_score.view(-1, 2),
|
|
|
next_sentence_label.view(-1))
|
|
|
total_loss = masked_lm_loss + next_sentence_loss
|
|
|
|
|
|
if not return_dict:
|
|
|
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
|
|
return ((total_loss, ) +
|
|
|
output) if total_loss is not None else output
|
|
|
|
|
|
return BertForPreTrainingOutput(
|
|
|
loss=total_loss,
|
|
|
prediction_logits=prediction_scores,
|
|
|
seq_relationship_logits=seq_relationship_score,
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
attentions=outputs.attentions,
|
|
|
)
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """,
|
|
|
BERT_START_DOCSTRING,
|
|
|
)
|
|
|
class BertLMHeadModel(BertPreTrainedModel):
|
|
|
|
|
|
_keys_to_ignore_on_load_unexpected = [r'pooler']
|
|
|
_keys_to_ignore_on_load_missing = [
|
|
|
r'position_ids', r'predictions.decoder.bias'
|
|
|
]
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__(config)
|
|
|
|
|
|
self.bert = BertModel(config, add_pooling_layer=False)
|
|
|
self.cls = BertOnlyMLMHead(config)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
return self.cls.predictions.decoder
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
|
self.cls.predictions.decoder = new_embeddings
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
|
BERT_INPUTS_DOCSTRING.format('batch_size, sequence_length'))
|
|
|
@replace_return_docstrings(
|
|
|
output_type=CausalLMOutputWithCrossAttentions,
|
|
|
config_class=_CONFIG_FOR_DOC)
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
labels=None,
|
|
|
past_key_values=None,
|
|
|
use_cache=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
is_decoder=True,
|
|
|
reduction='mean',
|
|
|
mode='multi_modal',
|
|
|
normalize_attention=True,
|
|
|
soft_labels=None,
|
|
|
alpha=0,
|
|
|
return_logits=False,
|
|
|
):
|
|
|
r"""
|
|
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
|
the model is configured as a decoder.
|
|
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
- 0 for tokens that are **masked**.
|
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
|
|
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
|
|
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
|
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
|
|
use_cache (:obj:`bool`, `optional`):
|
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
|
decoding (see :obj:`past_key_values`).
|
|
|
Returns:
|
|
|
Example::
|
|
|
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
|
|
>>> import torch
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
|
|
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
|
|
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
|
|
>>> outputs = model(**inputs)
|
|
|
>>> prediction_logits = outputs.logits
|
|
|
"""
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
if labels is not None:
|
|
|
use_cache = False
|
|
|
|
|
|
outputs = self.bert(
|
|
|
input_ids,
|
|
|
attention_mask=attention_mask,
|
|
|
token_type_ids=token_type_ids,
|
|
|
position_ids=position_ids,
|
|
|
head_mask=head_mask,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
past_key_values=past_key_values,
|
|
|
use_cache=use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict,
|
|
|
is_decoder=is_decoder,
|
|
|
mode=mode,
|
|
|
normalize_attention=normalize_attention,
|
|
|
)
|
|
|
|
|
|
sequence_output = outputs[0]
|
|
|
prediction_scores = self.cls(sequence_output)
|
|
|
|
|
|
if return_logits:
|
|
|
return prediction_scores[:, :-1, :].contiguous()
|
|
|
|
|
|
lm_loss = None
|
|
|
if labels is not None:
|
|
|
|
|
|
shifted_prediction_scores = prediction_scores[:, :
|
|
|
-1, :].contiguous()
|
|
|
labels = labels[:, 1:].contiguous()
|
|
|
loss_fct = CrossEntropyLoss(reduction=reduction)
|
|
|
lm_loss = loss_fct(
|
|
|
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
|
|
labels.view(-1))
|
|
|
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
|
|
|
|
|
if soft_labels is not None:
|
|
|
loss_distill = -torch.sum(
|
|
|
F.log_softmax(shifted_prediction_scores, dim=1) * soft_labels,
|
|
|
dim=-1)
|
|
|
loss_distill = (loss_distill * (labels != -100)).sum(1)
|
|
|
lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill
|
|
|
|
|
|
if not return_dict:
|
|
|
output = (prediction_scores, ) + outputs[2:]
|
|
|
return ((lm_loss, ) + output) if lm_loss is not None else output
|
|
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
|
loss=lm_loss,
|
|
|
logits=prediction_scores,
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
attentions=outputs.attentions,
|
|
|
cross_attentions=outputs.cross_attentions,
|
|
|
)
|
|
|
|
|
|
def prepare_inputs_for_generation(self,
|
|
|
input_ids,
|
|
|
past=None,
|
|
|
attention_mask=None,
|
|
|
**model_kwargs):
|
|
|
input_shape = input_ids.shape
|
|
|
|
|
|
if attention_mask is None:
|
|
|
attention_mask = input_ids.new_ones(input_shape)
|
|
|
|
|
|
|
|
|
if past is not None:
|
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
|
|
return {
|
|
|
'input_ids':
|
|
|
input_ids,
|
|
|
'attention_mask':
|
|
|
attention_mask,
|
|
|
'past_key_values':
|
|
|
past,
|
|
|
'encoder_hidden_states':
|
|
|
model_kwargs.get('encoder_hidden_states', None),
|
|
|
'encoder_attention_mask':
|
|
|
model_kwargs.get('encoder_attention_mask', None),
|
|
|
'is_decoder':
|
|
|
True,
|
|
|
}
|
|
|
|
|
|
def _reorder_cache(self, past, beam_idx):
|
|
|
reordered_past = ()
|
|
|
for layer_past in past:
|
|
|
reordered_past += (tuple(
|
|
|
past_state.index_select(0, beam_idx)
|
|
|
for past_state in layer_past), )
|
|
|
return reordered_past
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class MaskedLMOutputWithDistill(MaskedLMOutput):
|
|
|
loss_aux: Optional[torch.FloatTensor] = None
|
|
|
loss_distill: Optional[torch.FloatTensor] = None
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
"""Bert Model with a `language modeling` head on top. """,
|
|
|
BERT_START_DOCSTRING)
|
|
|
class BertForMaskedLM(BertPreTrainedModel):
|
|
|
|
|
|
_keys_to_ignore_on_load_unexpected = [r'pooler']
|
|
|
_keys_to_ignore_on_load_missing = [
|
|
|
r'position_ids', r'predictions.decoder.bias'
|
|
|
]
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__(config)
|
|
|
|
|
|
self.bert = BertModel(config, add_pooling_layer=False)
|
|
|
self.cls = BertOnlyMLMHead(config)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def tie_aux_decoder_weights(self, module, aux_modules):
|
|
|
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)"""
|
|
|
for m in aux_modules:
|
|
|
m.predictions.decoder.weight = module.predictions.decoder.weight
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
return self.cls.predictions.decoder
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
|
self.cls.predictions.decoder = new_embeddings
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
encoder_embeds=None,
|
|
|
encoder_hidden_states=None,
|
|
|
encoder_attention_mask=None,
|
|
|
labels=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
is_decoder=False,
|
|
|
mode='multi_modal',
|
|
|
normalize_attention=True,
|
|
|
soft_labels=None,
|
|
|
alpha=0,
|
|
|
return_logits=False,
|
|
|
):
|
|
|
r"""
|
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
|
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
|
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
|
|
"""
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.bert(
|
|
|
input_ids,
|
|
|
attention_mask=attention_mask,
|
|
|
token_type_ids=token_type_ids,
|
|
|
position_ids=position_ids,
|
|
|
head_mask=head_mask,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
encoder_embeds=encoder_embeds,
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict,
|
|
|
is_decoder=is_decoder,
|
|
|
mode=mode,
|
|
|
normalize_attention=normalize_attention,
|
|
|
)
|
|
|
|
|
|
sequence_output = outputs[0]
|
|
|
prediction_scores = self.cls(sequence_output)
|
|
|
|
|
|
if return_logits:
|
|
|
return prediction_scores
|
|
|
|
|
|
masked_lm_loss = None
|
|
|
masked_lm_loss_aux = 0.0
|
|
|
if labels is not None:
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
masked_lm_loss = loss_fct(
|
|
|
prediction_scores.view(-1, self.config.vocab_size),
|
|
|
labels.view(-1))
|
|
|
|
|
|
if soft_labels is not None:
|
|
|
loss_distill = -torch.sum(
|
|
|
F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1)
|
|
|
loss_distill = loss_distill[labels != -100].mean()
|
|
|
masked_lm_loss = (1 -
|
|
|
alpha) * masked_lm_loss + alpha * loss_distill
|
|
|
|
|
|
if not return_dict:
|
|
|
output = (prediction_scores, ) + outputs[2:]
|
|
|
return ((masked_lm_loss, ) +
|
|
|
output) if masked_lm_loss is not None else output
|
|
|
|
|
|
|
|
|
return MaskedLMOutputWithDistill(
|
|
|
loss=masked_lm_loss,
|
|
|
loss_aux=masked_lm_loss_aux,
|
|
|
logits=prediction_scores,
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
attentions=outputs.attentions,
|
|
|
)
|
|
|
|
|
|
def prepare_inputs_for_generation(self,
|
|
|
input_ids,
|
|
|
attention_mask=None,
|
|
|
**model_kwargs):
|
|
|
input_shape = input_ids.shape
|
|
|
effective_batch_size = input_shape[0]
|
|
|
|
|
|
|
|
|
assert (self.config.pad_token_id
|
|
|
is not None), 'The PAD token should be defined for generation'
|
|
|
attention_mask = torch.cat([
|
|
|
attention_mask,
|
|
|
attention_mask.new_zeros((attention_mask.shape[0], 1))
|
|
|
],
|
|
|
dim=-1)
|
|
|
dummy_token = torch.full(
|
|
|
(effective_batch_size, 1),
|
|
|
self.config.pad_token_id,
|
|
|
dtype=torch.long,
|
|
|
device=input_ids.device,
|
|
|
)
|
|
|
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
|
|
|
|
|
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
|
|
|