Spaces:
Runtime error
Runtime error
salmanmapkar
commited on
Commit
•
61f5a06
1
Parent(s):
8520752
Update app.py
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
32 |
__FILES = set()
|
33 |
wispher_models = list(whisper._MODELS.keys())
|
34 |
|
35 |
-
def correct_grammar(input_text,num_return_sequences=
|
36 |
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
|
38 |
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
|
@@ -42,7 +42,16 @@ def correct_grammar(input_text,num_return_sequences=num_return_sequences):
|
|
42 |
for generated_sequence_idx, generated_sequence in enumerate(results):
|
43 |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
|
44 |
generated_sequences.append(text)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def CreateFile(filename):
|
48 |
__FILES.add(filename)
|
@@ -223,6 +232,8 @@ def Transcribe_V2(model, num_speakers, speaker_names, audio="temp_audio.wav"):
|
|
223 |
# conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
224 |
# conversation[-1][1] += segment["text"][1:]
|
225 |
# return output
|
|
|
|
|
226 |
return ("".join([f"[{start}] - {speaker} \n{text}\n" for start, end, speaker, text in conversation])), ({ "data": [{"start": start, "end":end, "speaker": speaker, "text": text} for start, end, speaker, text in conversation]})
|
227 |
|
228 |
def get_duration(path):
|
|
|
32 |
__FILES = set()
|
33 |
wispher_models = list(whisper._MODELS.keys())
|
34 |
|
35 |
+
def correct_grammar(input_text,num_return_sequences="1"):
|
36 |
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
|
38 |
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
|
|
|
42 |
for generated_sequence_idx, generated_sequence in enumerate(results):
|
43 |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
|
44 |
generated_sequences.append(text)
|
45 |
+
generated_text = "".join(generated_sequences)
|
46 |
+
_generated_text = ""
|
47 |
+
for idx, _sentence in enumerate(generated_text.split('.'), 0):
|
48 |
+
if not idx:
|
49 |
+
_generated_text+=_sentence+'.'
|
50 |
+
elif _sentence[:1]!=' ':
|
51 |
+
_generated_text+=' '+_sentence+'.'
|
52 |
+
else:
|
53 |
+
_generated_text+=_sentence+'.'
|
54 |
+
return _generated_text
|
55 |
|
56 |
def CreateFile(filename):
|
57 |
__FILES.add(filename)
|
|
|
232 |
# conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
233 |
# conversation[-1][1] += segment["text"][1:]
|
234 |
# return output
|
235 |
+
for idx in range(len(conversation)):
|
236 |
+
conversation[idx][3] = correct_grammar(conversation[idx][3])
|
237 |
return ("".join([f"[{start}] - {speaker} \n{text}\n" for start, end, speaker, text in conversation])), ({ "data": [{"start": start, "end":end, "speaker": speaker, "text": text} for start, end, speaker, text in conversation]})
|
238 |
|
239 |
def get_duration(path):
|