Margerie commited on
Commit
b38979e
β€’
1 Parent(s): ec5c780

Version demo ready

Browse files
1_πŸ“_form.py CHANGED
@@ -9,6 +9,7 @@ from huggingface_hub import hf_hub_download, upload_file
9
  import pandas as pd
10
  from huggingface_hub import create_repo
11
  import os
 
12
  from middleMan import parse_into_jinja_markdown as pj
13
 
14
  import requests
@@ -95,6 +96,27 @@ def card_upload(card_info,repo_id,token):
95
  )
96
  return url
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  def validate(self, repo_type="model"):
99
  """Validates card against Hugging Face Hub's model card validation logic.
100
  Using this function requires access to the internet, so it is only called
@@ -134,84 +156,55 @@ def validate(self, repo_type="model"):
134
 
135
  ## Save uploaded [markdown] file to directory to be used by jinja parser function
136
  def save_uploadedfile(uploadedfile):
137
- with open(os.path.join("temp_uploaded_filed_Dir",uploadedfile.name),"wb") as f:
138
  f.write(uploadedfile.getbuffer())
139
  st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name))
140
  return uploadedfile.name
141
 
142
 
143
  def main_page():
144
-
145
 
146
  if "model_name" not in st.session_state:
147
  # Initialize session state.
148
  st.session_state.update({
149
- "input_model_name": "",
 
 
 
 
 
 
 
 
 
 
 
 
150
  "license": "",
151
- "library_name": "",
152
- "datasets": "",
153
- "metrics": [],
154
- "task": "",
155
- "tags": "",
156
- "model_description": "Some cool model...",
157
- "the_authors":"",
158
- "Shared_by":"",
159
- "Model_details_text": "",
160
- "Model_developers": "",
161
- "blog_url":"",
162
- "Parent_Model_url":"",
163
- "Parent_Model_name":"",
164
-
165
- "Model_how_to": "",
166
-
167
- "Model_uses": "",
168
- "Direct_Use": "",
169
- "Downstream_Use":"",
170
- "Out-of-Scope_Use":"",
171
-
172
- "Model_Limits_n_Risks": "",
173
- "Recommendations":"",
174
-
175
- "training_Data": "",
176
- "model_preprocessing":"",
177
- "Speeds_Sizes_Times":"",
178
-
179
-
180
-
181
- "Model_Eval": "",
182
- "Testing_Data":"",
183
- "Factors":"",
184
- "Metrics":"",
185
- "Model_Results":"",
186
-
187
- "Model_c02_emitted": "",
188
- "Model_hardware":"",
189
- "hours_used":"",
190
- "Model_cloud_provider":"",
191
- "Model_cloud_region":"",
192
-
193
- "Model_cite": "",
194
- "paper_url": "",
195
- "github_url": "",
196
- "bibtex_citation": "",
197
- "APA_citation":"",
198
-
199
- "Model_examin":"",
200
- "Model_card_contact":"",
201
- "Model_card_authors":"",
202
- "Glossary":"",
203
- "More_info":"",
204
-
205
- "Model_specs":"",
206
- "compute_infrastructure":"",
207
- "technical_specs_software":"",
208
-
209
- "check_box": bool,
210
- "markdown_upload":" ",
211
- "legal_view":bool,
212
- "researcher_view":bool,
213
- "beginner_technical_view":bool,
214
- "markdown_state":"",
215
  })
216
  ## getting cache for each warnings
217
  languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data()
@@ -222,11 +215,11 @@ def main_page():
222
  warning_placeholder = st.empty()
223
 
224
  st.text_input("Model Name", key=persist("model_name"))
225
- st.number_input("Version",key=persist("version"),step=0.1)
226
  st.text("Intended use:")
227
  left, right = st.columns([4,2])
228
- left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi")
229
- right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2" )
230
  left, right = st.columns(2)
231
  nlines = int(left.number_input("Number of prescription levels", 0, 20, 1))
232
  # cols = st.columns(ncol)
@@ -234,7 +227,7 @@ def main_page():
234
  right.number_input(f"Prescription [Gy] # {i}", key=i)
235
  st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information'))
236
  st.text_area("Motivation for development", key=persist('motivation'))
237
- st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('class'))
238
  st.date_input("Creation date", key=persist('creation_date'))
239
  st.text_area("Type of architecture",value="UNet", key=persist('architecture'))
240
 
@@ -244,13 +237,12 @@ def main_page():
244
  middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution'))
245
  right.text_input("Email", key=persist('dev_email'))
246
 
247
- st.text_area("Funded by", key=persist('fund'))
248
- st.text_area("Shared by", key=persist('shared'))
249
  st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license"))
250
- st.text_area("Fine tuned from model", key=persist('fine_tuned_from'))
251
- st.text_input("Related Research Paper", help="Research paper related to this model.", key=persist("paper_url"))
252
- st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("github_url"))
253
- st.text_area("Bibtex Citation", help="Bibtex citations for related work", key=persist("bibtex_citations"))
254
  # st.selectbox("Library Name", [""] + libraries, help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
255
  # st.text_input("Parent Model (URL)", help="If this model has another model as its base, please provide the URL link to the parent model", key=persist("Parent_Model_name"))
256
  # st.text_input("Datasets (comma separated)", help="The dataset(s) used to train this model. Use dataset id from https://hf.co/datasets.", key=persist("datasets"))
@@ -269,7 +261,7 @@ def main_page():
269
  # warnings setting
270
  # languages=st.session_state.languages or None
271
  license=st.session_state.license or None
272
- task = st.session_state.task or None
273
  markdown_upload = st.session_state.markdown_upload
274
  #uploaded_model_card = st.session_state.uploaded_model
275
  # Handle any warnings...
@@ -293,8 +285,6 @@ def main_page():
293
  # Read a single file
294
  uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload')
295
  if uploaded_file is not None:
296
-
297
- file_details = {"FileName":uploaded_file.name,"FileType":uploaded_file.type}
298
  name_of_uploaded_file = save_uploadedfile(uploaded_file)
299
 
300
  st.session_state.markdown_upload = name_of_uploaded_file ## uploaded model card
@@ -323,10 +313,8 @@ def main_page():
323
  if submit:
324
  if len(repo_id.split('/')) == 2:
325
  repo_url = create_repo(repo_id, exist_ok=True, token=token)
326
- print("repo_url",repo_url)
327
- card_info = pj()
328
- print(card_info)
329
- new_url = card_upload(card_info,repo_id, token=token)
330
  st.success(f"Pushed the card to the repo [here]({new_url})!") # note: was repo_url
331
  else:
332
  st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food")
 
9
  import pandas as pd
10
  from huggingface_hub import create_repo
11
  import os
12
+ from datetime import date
13
  from middleMan import parse_into_jinja_markdown as pj
14
 
15
  import requests
 
96
  )
97
  return url
98
 
99
+ def images_upload(images_list,repo_id,token):
100
+ repo_type = "model"
101
+ commit_description=None,
102
+ revision=None
103
+ create_pr=None
104
+ for img in images_list:
105
+ if img is not None:
106
+ with tempfile.TemporaryDirectory() as tmpdir:
107
+ tmp_path = Path(tmpdir) / "README.md"
108
+ tmp_path.write_text(str(img))
109
+ url = upload_file(
110
+ path_or_fileobj=str(tmp_path),
111
+ path_in_repo="README.md",
112
+ repo_id=repo_id,
113
+ token=token,
114
+ repo_type=repo_type,
115
+ # identical_ok=True,
116
+ revision=revision
117
+ )
118
+ return url
119
+
120
  def validate(self, repo_type="model"):
121
  """Validates card against Hugging Face Hub's model card validation logic.
122
  Using this function requires access to the internet, so it is only called
 
156
 
157
  ## Save uploaded [markdown] file to directory to be used by jinja parser function
158
  def save_uploadedfile(uploadedfile):
159
+ with open(uploadedfile.name,"wb") as f:
160
  f.write(uploadedfile.getbuffer())
161
  st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name))
162
  return uploadedfile.name
163
 
164
 
165
  def main_page():
166
+ today=date.today()
167
 
168
  if "model_name" not in st.session_state:
169
  # Initialize session state.
170
  st.session_state.update({
171
+ # Model Basic Information
172
+ "model_version": 0,
173
+ "icd10": [],
174
+ "treatment_modality": [],
175
+ "prescription_levels": [],
176
+ "additional_information": "",
177
+ "motivation": "",
178
+ "model_class":"",
179
+ "creation_date": today,
180
+ "architecture": "",
181
+ "model_developers": "",
182
+ "funded_by":"",
183
+ "shared_by":"",
184
  "license": "",
185
+ "finetuned_from": "",
186
+ "research_paper": "",
187
+ "git_repo": "",
188
+ # Technical Specifications
189
+ "nb_parameters": 5,
190
+ "input_channels": [],
191
+ "loss_function": "",
192
+ "batch_size": 1,
193
+ "patch_dimension": [],
194
+ "architecture_filename":None,
195
+ "libraries":[],
196
+ "hardware": "",
197
+ "inference_time": 10,
198
+ "get_started_code": "",
199
+ # Training Details
200
+ "training_set_size":10,
201
+ "validation_set_size":10,
202
+ "age_fig_filename":"",
203
+ "sex_fig_filename":"",
204
+ "dataset_source": "",
205
+ "acquisition_from": today,
206
+ "acquisition_to": today,
207
+ "markdown_upload": ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  })
209
  ## getting cache for each warnings
210
  languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data()
 
215
  warning_placeholder = st.empty()
216
 
217
  st.text_input("Model Name", key=persist("model_name"))
218
+ st.number_input("Version",key=persist("model_version"),step=0.1)
219
  st.text("Intended use:")
220
  left, right = st.columns([4,2])
221
+ left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi",key=persist("icd10"))
222
+ right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2", key=persist("treatment_modality"))
223
  left, right = st.columns(2)
224
  nlines = int(left.number_input("Number of prescription levels", 0, 20, 1))
225
  # cols = st.columns(ncol)
 
227
  right.number_input(f"Prescription [Gy] # {i}", key=i)
228
  st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information'))
229
  st.text_area("Motivation for development", key=persist('motivation'))
230
+ st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('model_class'))
231
  st.date_input("Creation date", key=persist('creation_date'))
232
  st.text_area("Type of architecture",value="UNet", key=persist('architecture'))
233
 
 
237
  middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution'))
238
  right.text_input("Email", key=persist('dev_email'))
239
 
240
+ st.text_area("Funded by", key=persist('funded_by'))
241
+ st.text_area("Shared by", key=persist('shared_by'))
242
  st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license"))
243
+ st.text_area("Fine tuned from model", key=persist('finetuned_from'))
244
+ st.text_area("Related Research Paper", help="Research paper related to this model.", key=persist("research_paper"))
245
+ st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("git_repo"))
 
246
  # st.selectbox("Library Name", [""] + libraries, help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
247
  # st.text_input("Parent Model (URL)", help="If this model has another model as its base, please provide the URL link to the parent model", key=persist("Parent_Model_name"))
248
  # st.text_input("Datasets (comma separated)", help="The dataset(s) used to train this model. Use dataset id from https://hf.co/datasets.", key=persist("datasets"))
 
261
  # warnings setting
262
  # languages=st.session_state.languages or None
263
  license=st.session_state.license or None
264
+ task = None #st.session_state.task or None
265
  markdown_upload = st.session_state.markdown_upload
266
  #uploaded_model_card = st.session_state.uploaded_model
267
  # Handle any warnings...
 
285
  # Read a single file
286
  uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload')
287
  if uploaded_file is not None:
 
 
288
  name_of_uploaded_file = save_uploadedfile(uploaded_file)
289
 
290
  st.session_state.markdown_upload = name_of_uploaded_file ## uploaded model card
 
313
  if submit:
314
  if len(repo_id.split('/')) == 2:
315
  repo_url = create_repo(repo_id, exist_ok=True, token=token)
316
+ new_url = card_upload(pj(),repo_id, token=token)
317
+ # images_upload([st.session_state['architecture_filename'], st.session_state["age_fig_filename"], st.session_state["sex_fig_filename"]],repo_id, token=token)
 
 
318
  st.success(f"Pushed the card to the repo [here]({new_url})!") # note: was repo_url
319
  else:
320
  st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food")
current_card.md CHANGED
@@ -1,224 +1,83 @@
1
  ---
2
  language:
3
  - en
4
- license: openrail
5
  ---
6
 
7
- # {{ model_id }}
8
 
9
  <!--> Provide a quick summary of what the model is/does. <!-->
10
 
11
  # Table of Contents
12
 
13
- - [{{ model_id }}](#-model_id-)
14
  - [Table of Contents](#table-of-contents)
15
- - [Model Details](#model-details)
16
- - [Model Description](#model-description)
17
- - [Uses](#uses)
18
- - [Direct Use](#direct-use)
19
- - [Downstream Use [Optional]](#downstream-use-optional)
20
- - [Out-of-Scope Use](#out-of-scope-use)
21
- - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
22
- - [Recommendations](#recommendations)
23
- - [Training Details](#training-details)
24
- - [Training Data](#training-data)
25
- - [Training Procedure](#training-procedure)
26
- - [Preprocessing](#preprocessing)
27
- - [Speeds, Sizes, Times](#speeds-sizes-times)
28
- - [Evaluation](#evaluation)
29
- - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
30
- - [Testing Data](#testing-data)
31
- - [Factors](#factors)
32
- - [Metrics](#metrics)
33
- - [Results](#results)
34
- - [Model Examination](#model-examination)
35
- - [Environmental Impact](#environmental-impact)
36
- - [Technical Specifications [optional]](#technical-specifications-optional)
37
- - [Model Architecture and Objective](#model-architecture-and-objective)
38
- - [Compute Infrastructure](#compute-infrastructure)
39
- - [Hardware](#hardware)
40
- - [Software](#software)
41
- - [Citation](#citation)
42
- - [Glossary [optional]](#glossary-optional)
43
- - [More Information [optional]](#more-information-optional)
44
- - [Model Card Authors [optional]](#model-card-authors-optional)
45
- - [Model Card Contact](#model-card-contact)
46
- - [How to Get Started with the Model](#how-to-get-started-with-the-model)
47
-
48
-
49
- # Model Details
50
-
51
- ## Model Description
52
 
53
- <!--> This section provides basic information about what the model is, its current status, and where it came from.. <!-->
54
- {{ the_model_description | default("More information needed", true)}}
55
 
56
- - **Developed by:** {{ developers | default("More information needed", true)}}
57
- - **Shared by [Optional]:** {{ shared_by | default("More information needed", true)}}
58
- - **Model type:** Language model
59
- - **Language(s) (NLP):** {{ language | default("More information needed", true)}}
 
 
 
 
 
 
 
 
 
 
 
 
60
  - **License:** {{ license | default("More information needed", true)}}
61
- - **Related Models:** {{ related_models | default("More information needed", true)}}
62
- - **Parent Model:** {{ parent_model | default("More information needed", true)}}
63
- - **Resources for more information:** {{ more_resources | default("More information needed", true)}}
64
-
65
- # Uses
66
-
67
- <!--> Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. <!-->
68
-
69
- ## Direct Use
70
-
71
- <!--> This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. <!-->
72
-
73
- {{ direct_use | default("More information needed", true)}}
74
-
75
- ## Downstream Use [Optional]
76
-
77
- <!--> This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app <!-->
78
-
79
- {{ downstream_use | default("More information needed", true)}}
80
-
81
- ## Out-of-Scope Use
82
-
83
- <!--> This section addresses misuse, malicious use, and uses that the model will not work well for. <!-->
84
-
85
- {{ out_of_scope_use | default("More information needed", true)}}
86
-
87
- # Bias, Risks, and Limitations
88
-
89
- <!--> This section is meant to convey both technical and sociotechnical limitations. <!-->
90
-
91
- {{ bias_risks_limitations | default("More information needed", true)}}
92
-
93
- ## Recommendations
94
-
95
- <!--> This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. <!-->
96
-
97
- {{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.", true)}}
98
-
99
- # Training Details
100
-
101
- ## Training Data
102
-
103
- <!--> This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. <!-->
104
-
105
- {{ training_data | default("More information needed", true)}}
106
-
107
- ## Training Procedure
108
-
109
- <!--> This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. <!-->
110
-
111
- ### Preprocessing
112
-
113
- {{ preprocessing | default("More information needed", true)}}
114
-
115
- ### Speeds, Sizes, Times
116
-
117
- <!--> This section provides information about throughput, start/end time, checkpoint size if relevant, etc. <!-->
118
-
119
- {{ speeds_sizes_times | default("More information needed", true)}}
120
-
121
- # Evaluation
122
-
123
- <!--> This section describes the evaluation protocols and provides the results. <!-->
124
-
125
- ## Testing Data, Factors & Metrics
126
-
127
- ### Testing Data
128
-
129
- <!--> This should link to a Data Card if possible. <!-->
130
-
131
- {{ testing_data | default("More information needed", true)}}
132
-
133
- ### Factors
134
-
135
- <!--> These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. <!-->
136
-
137
- {{ testing_factors | default("More information needed", true)}}
138
 
139
- ### Metrics
140
 
141
- <!--> These are the evaluation metrics being used, ideally with a description of why. <!-->
142
-
143
- {{ testing_metrics | default("More information needed", true)}}
144
-
145
- ## Results
146
-
147
- {{ results | default("More information needed", true)}}
148
-
149
- # Model Examination
150
-
151
- {{ model_examination | default("More information needed", true)}}
152
-
153
- # Environmental Impact
154
-
155
- <!--> Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly <!-->
156
-
157
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
158
-
159
- - **Hardware Type:** {{ hardware | default("More information needed", true)}}
160
- - **Hours used:** {{ hours_used | default("More information needed", true)}}
161
- - **Cloud Provider:** {{ cloud_provider | default("More information needed", true)}}
162
- - **Compute Region:** {{ cloud_region | default("More information needed", true)}}
163
- - **Carbon Emitted:** {{ co2_emitted | default("More information needed", true)}}
164
-
165
- # Technical Specifications [optional]
166
-
167
- ## Model Architecture and Objective
168
-
169
- {{ model_specs | default("More information needed", true)}}
170
-
171
- ## Compute Infrastructure
172
-
173
- {{ compute_infrastructure | default("More information needed", true)}}
174
-
175
- ### Hardware
176
-
177
- {{ hardware | default("More information needed", true)}}
178
-
179
- ### Software
180
-
181
- {{ software | default("More information needed", true)}}
182
-
183
- # Citation
184
-
185
- <!--> If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. <!-->
186
-
187
- **BibTeX:**
188
-
189
- {{ citation_bibtex | default("More information needed", true)}}
190
-
191
- **APA:**
192
-
193
- {{ citation_apa | default("More information needed", true)}}
194
-
195
- # Glossary [optional]
196
-
197
- <!--> If relevant, include terms and calculations in this section that can help readers understand the model or model card. <!-->
198
-
199
- {{ glossary | default("More information needed", true)}}
200
-
201
- # More Information [optional]
202
 
203
- {{ more_information | default("More information needed", true)}}
204
 
205
- # Model Card Authors [optional]
206
 
207
- {{ model_card_authors | default("More information needed", true)}}
 
 
 
 
 
 
 
 
208
 
209
- # Model Card Contact
 
 
210
 
211
- {{ model_card_contact | default("More information needed", true)}}
 
 
212
 
213
- # How to Get Started with the Model
 
 
214
 
215
- Use the code below to get started with the model.
216
 
217
- <details>
218
- <summary> Click to expand </summary>
219
 
220
- {{ get_started_code | default("More information needed", true)}}
 
 
221
 
222
- </details>
 
223
 
224
 
 
1
  ---
2
  language:
3
  - en
 
4
  ---
5
 
6
+ # {{ model_name }}
7
 
8
  <!--> Provide a quick summary of what the model is/does. <!-->
9
 
10
  # Table of Contents
11
 
12
+ - [{{ model_name }}](#-model_name)
13
  - [Table of Contents](#table-of-contents)
14
+ - [1. Model Basic Information](#model-basic-information)
15
+ - [2. Technical Specifications](#technical-specifications)
16
+ - [3. Training Details](#training-details)
17
+ - [4. Model Evaluation](#model-evaluation)
18
+ - [5. Model Examination](#model-examination)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
20
 
21
+ # 1. Model Basic Information
22
+ <!--> This section provides basic information about what the model is, its current status, and where it came from.. <!-->
23
+ - **Version:** {{ version | default("0")}}
24
+ ## 1.1. Intended use
25
+ - **Treatment site ICD10:** {{ icd10 | default("More information needed", true) }}
26
+ - **Treatment modality:** {{ treatment_modality | default("More information needed", true) }}
27
+ - **Prescription levels [Gy]:** {{ prescription_levels | default("More information needed", true)}}
28
+ - **Additional information:** {{ additional_information | default("More information needed", true)}}
29
+ - **Motivation for development:** {{ motivation | default("More information needed", true)}}
30
+ - **Class:** {{ model_class | default("More information needed", true)}}
31
+ - **Creation date:** {{ creation_date | default("More information needed", true)}}
32
+ - **Type of architecture** {{ architecture | default("More information needed", true)}}
33
+ ## 1.2. Development and deployment
34
+ - **Developed by:** Name: {{ dev_name | default("More information needed", true)}}, Instutution: {{dev_institution | default("More information needed", true)}}, Email: {{ dev_email | default("More information needed", true)}}
35
+ - **Funded by:** {{ funded_by | default("More information needed", true)}}
36
+ - **Shared by:** {{ shared_by | default("More information needed", true)}}
37
  - **License:** {{ license | default("More information needed", true)}}
38
+ - **Finetuned from model:** {{ finetuned_by | default("More information needed", true)}}
39
+ - **Related Research Paper(s):** {{ research_paper | default("More information needed", true)}}
40
+ - **Related Git Repository:** {{ git_repo | default("More information needed", true)}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ ## 1.3. How to Get Started with the Model
43
 
44
+ Use the code below to get started with the model.
45
+ <details>
46
+ <summary> Click to expand </summary>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ {{ get_started_code | default("More information needed", true)}}
49
 
50
+ </details>
51
 
52
+ # 2. Technical Specifications
53
+ ## 2.1. Model architecture
54
+ - **Total number of parameters:** {{ nb_parameters | default("More information needed", true)}}
55
+ - **Input channels:** {{ input_channels | default("More information needed", true)}}
56
+ - **Loss function** {{ loss_function | default("More information needed", true)}}
57
+ - **Batch size** {{ batch_size | default("More information needed", true)}}
58
+ - **Patch dimension** {{ patch_dimension | default("More information needed", true)}}
59
+ <img width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/xGGUE5spRY6tar5R4VeKX.png" alt="error while loading image">
60
+ _Figure 1: Model architecture_
61
 
62
+ - **Libraries/Dependencies:** {{ libraries | default("More information needed", true)}}
63
+ - **Hardware recommended:** {{ hardware | default("More information needed", true)}}
64
+ - **Inference time for recommended [seconds]** {{ inference_time | default("More information needed", true)}}
65
 
66
+ # 3. Training Details
67
+ - **Training set size:** {{ training_set_size | default("More information needed", true)}}
68
+ - **Validation set size:** {{ validation_set_size | default("More information needed", true)}}
69
 
70
+ Age distribution | Sex distribution
71
+ --- | ---
72
+ ![](age_distribution.png) | ![](sex_distribution.png)
73
 
 
74
 
 
 
75
 
76
+ - **Dataset source:** {{ dataset_source | default("More information needed", true)}}
77
+ - **Acquisition date** from {{ acquisition_from | default("More information needed", true)}} to {{ acquisition_to | default("More information needed", true)}}
78
+ # 4. Model Evaluation
79
 
80
+ # 5. Model Examination
81
+ <!--> This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. <!-->
82
 
83
 
middleMan.py CHANGED
@@ -23,30 +23,42 @@ def parse_into_jinja_markdown():
23
  # - parent model
24
  # to fix:
25
  # citation on form: check box for bibtex or apa: then parse
26
- return (temp.render(model_id = st.session_state["model_name"],
27
-
28
- the_model_description = st.session_state["model_description"],developers=st.session_state["Model_developers"],shared_by = st.session_state["Shared_by"],model_license = st.session_state['license'],
29
- parent_model_link = st.session_state['Parent_Model_url'],
30
- direct_use = st.session_state["Direct_Use"], downstream_use = st.session_state["Downstream_Use"],out_of_scope_use = st.session_state["Out-of-Scope_Use"],
31
- bias_risks_limitations = st.session_state["Model_Limits_n_Risks"], bias_recommendations = st.session_state['Recommendations'],
32
- model_examination = st.session_state['Model_examin'],
33
- speeds_sizes_times = st.session_state['Speeds_Sizes_Times'],
34
- hardware= st.session_state['Model_hardware'], hours_used = st.session_state['hours_used'], cloud_provider = st.session_state['Model_cloud_provider'], cloud_region = st.session_state['Model_cloud_region'], co2_emitted = st.session_state['Model_c02_emitted'],
35
- citation_bibtex= st.session_state["APA_citation"], citation_apa = st.session_state['bibtex_citation'],
36
- training_data = st.session_state['training_Data'], preprocessing =st.session_state['model_preprocessing'],
37
- model_specs = st.session_state['Model_specs'], compute_infrastructure = st.session_state['compute_infrastructure'],software = st.session_state['technical_specs_software'],
38
- glossary = st.session_state['Glossary'],
39
- more_information = st.session_state['More_info'],
40
- model_card_authors = st.session_state['the_authors'],
41
- model_card_contact = st.session_state['Model_card_contact'],
42
- get_started_code =st.session_state["Model_how_to"],
43
- repo_link = st.session_state["github_url"],
44
- paper_link = st.session_state["paper_url"],
45
- blog_link = st.session_state["blog_url"],
46
- testing_data = st.session_state["Testing_Data"],
47
- testing_factors = st.session_state["Factors"],
48
- results = st.session_state['Model_Results'],
49
- testing_metrics = st.session_state["Metrics"]
 
 
 
 
 
 
 
 
 
 
 
 
50
  ))
51
 
52
 
 
23
  # - parent model
24
  # to fix:
25
  # citation on form: check box for bibtex or apa: then parse
26
+ return (temp.render(model_name = st.session_state["model_name"], model_version = st.session_state["model_version"],
27
+ icd10 = st.session_state["icd10"], treatment_modality = st.session_state["treatment_modality"], prescription_levels = st.session_state["prescription_levels"],
28
+ additional_information = st.session_state["additional_information"], motivation = st.session_state["motivation"], model_class = st.session_state["model_class"],
29
+ creation_date = st.session_state["creation_date"], architecture = st.session_state["architecture"],
30
+ model_developers=st.session_state["model_developers"],funded_by = st.session_state["funded_by"],shared_by = st.session_state["shared_by"],
31
+ license = st.session_state['license'],finetuned_from = st.session_state['finetuned_from'], research_paper = st.session_state["research_paper"], git_repo = st.session_state["git_repo"],
32
+
33
+
34
+ nb_parameters = st.session_state["nb_parameters"], input_channels = st.session_state["input_channels"],
35
+ loss_function = st.session_state["loss_function"], batch_size = st.session_state["batch_size"], patch_dimension = st.session_state["patch_dimension"],
36
+ architecture_filename = st.session_state["architecture_filename"], libraries = st.session_state["libraries"], hardware = st.session_state["hardware"],
37
+ inference_time = st.session_state["inference_time"], get_started_code = st.session_state["get_started_code"],
38
+
39
+ training_set_size = st.session_state["training_set_size"], validation_set_size = st.session_state["validation_set_size"],
40
+ age_fig_filename = st.session_state["age_fig_filename"], sex_fig_filename = st.session_state["sex_fig_filename"],
41
+ dataset_source = st.session_state["dataset_source"], acquisition_from = st.session_state["acquisition_from"], acquisition_to = st.session_state["acquisition_to"],
42
+ # direct_use = st.session_state["Direct_Use"], downstream_use = st.session_state["Downstream_Use"],out_of_scope_use = st.session_state["Out-of-Scope_Use"],
43
+ # bias_risks_limitations = st.session_state["Model_Limits_n_Risks"], bias_recommendations = st.session_state['Recommendations'],
44
+ # model_examination = st.session_state['Model_examin'],
45
+ # speeds_sizes_times = st.session_state['Speeds_Sizes_Times'],
46
+ # hardware= st.session_state['Model_hardware'], hours_used = st.session_state['hours_used'], cloud_provider = st.session_state['Model_cloud_provider'], cloud_region = st.session_state['Model_cloud_region'], co2_emitted = st.session_state['Model_c02_emitted'],
47
+ # citation_bibtex= st.session_state["APA_citation"], citation_apa = st.session_state['bibtex_citation'],
48
+ # training_data = st.session_state['training_Data'], preprocessing =st.session_state['model_preprocessing'],
49
+ # model_specs = st.session_state['Model_specs'], compute_infrastructure = st.session_state['compute_infrastructure'],software = st.session_state['technical_specs_software'],
50
+ # glossary = st.session_state['Glossary'],
51
+ # more_information = st.session_state['More_info'],
52
+ # model_card_authors = st.session_state['the_authors'],
53
+ # model_card_contact = st.session_state['Model_card_contact'],
54
+ # get_started_code =st.session_state["Model_how_to"],
55
+ # repo_link = st.session_state["github_url"],
56
+ # paper_link = st.session_state["paper_url"],
57
+ # blog_link = st.session_state["blog_url"],
58
+ # testing_data = st.session_state["Testing_Data"],
59
+ # testing_factors = st.session_state["Factors"],
60
+ # results = st.session_state['Model_Results'],
61
+ # testing_metrics = st.session_state["Metrics"]
62
  ))
63
 
64
 
pages/1_πŸ‘€_Technical_Specifications.py CHANGED
@@ -8,10 +8,11 @@ import requests
8
  # global variable_output
9
 
10
 
11
-
12
  def get_cached_data():
13
  # json.load(open('file_TG263.json'))
14
  struct_dict = {"Target":["GTV","CTV","PTV"],"Anatomy":["SpinalCord","BrainStem"]}
 
 
15
  r = requests.get('https://huggingface.co/api/models-tags-by-type')
16
  tags_data = r.json()
17
  libraries = [x['id'] for x in tags_data['library']]
@@ -28,14 +29,14 @@ def cs_body():
28
  st.header('Technical Specifications')
29
  st.write("Provide an overview of any additional technical specifications for this model")
30
  st.markdown('##### Model architecture')
31
- st.number_input("Total number of trainable parameters [million]",value=5)
32
  left, middle, right = st.columns(3)
33
  nlines = int(left.number_input("Input channels", 0, 20, 1))
34
  for i in range(nlines):
35
  type_input = middle.selectbox(f"Input type # {i}", list(struct_dict.keys()))
36
  right.selectbox("Input",struct_dict[type_input], help="From https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/acm2.12701")
37
- st.text_input("Loss function",placeholder="MSE")
38
- st.number_input("Batch size",value=1)
39
  left, right = st.columns(2)
40
  nlines = int(left.number_input("Patch dimension", 2, 3, 3))
41
  # cols = st.columns(ncol)
@@ -45,10 +46,10 @@ def cs_body():
45
  if arch_fig is not None:
46
  st.image(arch_fig)
47
 
48
- st.selectbox("Library/Dependencies", libraries,help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
49
- st.text_input("Hardware recommended", placeholder="GPU 20Gb RAM", key=persist("Model_hardware"))
50
  st.number_input("Inference time for recommended hardware [seconds]",value=10, key=persist("inference_time"))
51
- st.text_area("Installation / Getting started", placeholder="Installation procedure / code to run inference", key=persist("Model_how_to"))
52
 
53
 
54
 
 
8
  # global variable_output
9
 
10
 
 
11
  def get_cached_data():
12
  # json.load(open('file_TG263.json'))
13
  struct_dict = {"Target":["GTV","CTV","PTV"],"Anatomy":["SpinalCord","BrainStem"]}
14
+
15
+
16
  r = requests.get('https://huggingface.co/api/models-tags-by-type')
17
  tags_data = r.json()
18
  libraries = [x['id'] for x in tags_data['library']]
 
29
  st.header('Technical Specifications')
30
  st.write("Provide an overview of any additional technical specifications for this model")
31
  st.markdown('##### Model architecture')
32
+ st.number_input("Total number of trainable parameters [million]",value=5,key=persist("nb_parameters"))
33
  left, middle, right = st.columns(3)
34
  nlines = int(left.number_input("Input channels", 0, 20, 1))
35
  for i in range(nlines):
36
  type_input = middle.selectbox(f"Input type # {i}", list(struct_dict.keys()))
37
  right.selectbox("Input",struct_dict[type_input], help="From https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/acm2.12701")
38
+ st.text_input("Loss function",placeholder="MSE", key=persist("loss_function"))
39
+ st.number_input("Batch size",value=1,key=persist("batch_size"))
40
  left, right = st.columns(2)
41
  nlines = int(left.number_input("Patch dimension", 2, 3, 3))
42
  # cols = st.columns(ncol)
 
46
  if arch_fig is not None:
47
  st.image(arch_fig)
48
 
49
+ st.multiselect("Library/Dependencies", libraries, default=[libraries[0]], help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('libraries'))
50
+ st.text_input("Hardware recommended", placeholder="GPU 20Gb RAM", key=persist("hardware"))
51
  st.number_input("Inference time for recommended hardware [seconds]",value=10, key=persist("inference_time"))
52
+ st.text_area("Installation / Getting started", placeholder="Installation procedure / code to run inference", key=persist("get_started_code"))
53
 
54
 
55
 
pages/2_πŸ‹οΈβ€β™€οΈ_Model_training.py CHANGED
@@ -31,8 +31,10 @@ def cs_body():
31
 
32
  fig, ax = plt.subplots()
33
  ax.set_title("Age distribution")
34
- ax.hist(np.random.normal(size=500))
35
- left.pyplot(fig)
 
 
36
 
37
  fig, ax = plt.subplots()
38
  ax.pie([45,55],labels=["Men","Women"])
 
31
 
32
  fig, ax = plt.subplots()
33
  ax.set_title("Age distribution")
34
+ ax.hist(np.random.normal(loc=40,scale=4.0,size=500))
35
+ age = left.pyplot(fig)
36
+
37
+
38
 
39
  fig, ax = plt.subplots()
40
  ax.pie([45,55],labels=["Men","Women"])