|
import argparse |
|
import logging |
|
import multiprocessing |
|
import os |
|
import pickle |
|
import time |
|
from functools import partial |
|
|
|
import h5py |
|
import numpy as np |
|
import pandas as pd |
|
import tensorflow as tf |
|
from data_reader import DataReader_mseed_array, DataReader_pred |
|
from postprocess import ( |
|
extract_amplitude, |
|
extract_picks, |
|
save_picks, |
|
save_picks_json, |
|
save_prob_h5, |
|
) |
|
from tqdm import tqdm |
|
from visulization import plot_waveform |
|
|
|
from model import ModelConfig, UNet |
|
|
|
tf.compat.v1.disable_eager_execution() |
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) |
|
|
|
|
|
def read_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--batch_size", default=20, type=int, help="batch size") |
|
parser.add_argument("--model_dir", help="Checkpoint directory (default: None)") |
|
parser.add_argument("--data_dir", default="", help="Input file directory") |
|
parser.add_argument("--data_list", default="", help="Input csv file") |
|
parser.add_argument("--hdf5_file", default="", help="Input hdf5 file") |
|
parser.add_argument("--hdf5_group", default="data", help="data group name in hdf5 file") |
|
parser.add_argument("--result_dir", default="results", help="Output directory") |
|
parser.add_argument("--result_fname", default="picks", help="Output file") |
|
parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick") |
|
parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick") |
|
parser.add_argument("--mpd", default=50, type=float, help="Minimum peak distance") |
|
parser.add_argument("--amplitude", action="store_true", help="if return amplitude value") |
|
parser.add_argument("--format", default="numpy", help="input format") |
|
parser.add_argument("--s3_url", default="localhost:9000", help="s3 url") |
|
parser.add_argument("--stations", default="", help="seismic station info") |
|
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test") |
|
parser.add_argument("--save_prob", action="store_true", help="If save result for test") |
|
parser.add_argument("--pre_sec", default=1, type=float, help="Window length before pick") |
|
parser.add_argument("--post_sec", default=4, type=float, help="Window length after pick") |
|
|
|
parser.add_argument("--highpass_filter", default=0.0, type=float, help="Highpass filter") |
|
parser.add_argument("--response_xml", default=None, type=str, help="response xml file") |
|
parser.add_argument("--sampling_rate", default=100, type=float, help="sampling rate") |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def pred_fn(args, data_reader, figure_dir=None, prob_dir=None, log_dir=None): |
|
current_time = time.strftime("%y%m%d-%H%M%S") |
|
if log_dir is None: |
|
log_dir = os.path.join(args.log_dir, "pred", current_time) |
|
if not os.path.exists(log_dir): |
|
os.makedirs(log_dir) |
|
if (args.plot_figure == True) and (figure_dir is None): |
|
figure_dir = os.path.join(log_dir, "figures") |
|
if not os.path.exists(figure_dir): |
|
os.makedirs(figure_dir) |
|
if (args.save_prob == True) and (prob_dir is None): |
|
prob_dir = os.path.join(log_dir, "probs") |
|
if not os.path.exists(prob_dir): |
|
os.makedirs(prob_dir) |
|
if args.save_prob: |
|
h5 = h5py.File(os.path.join(args.result_dir, "result.h5"), "w", libver="latest") |
|
prob_h5 = h5.create_group("/prob") |
|
logging.info("Pred log: %s" % log_dir) |
|
logging.info("Dataset size: {}".format(data_reader.num_data)) |
|
|
|
with tf.compat.v1.name_scope("Input_Batch"): |
|
if args.format == "mseed_array": |
|
batch_size = 1 |
|
else: |
|
batch_size = args.batch_size |
|
dataset = data_reader.dataset(batch_size) |
|
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next() |
|
|
|
config = ModelConfig(X_shape=data_reader.X_shape) |
|
with open(os.path.join(log_dir, "config.log"), "w") as fp: |
|
fp.write("\n".join("%s: %s" % item for item in vars(config).items())) |
|
|
|
model = UNet(config=config, input_batch=batch, mode="pred") |
|
|
|
sess_config = tf.compat.v1.ConfigProto() |
|
sess_config.gpu_options.allow_growth = True |
|
|
|
|
|
with tf.compat.v1.Session(config=sess_config) as sess: |
|
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5) |
|
init = tf.compat.v1.global_variables_initializer() |
|
sess.run(init) |
|
|
|
latest_check_point = tf.train.latest_checkpoint(args.model_dir) |
|
logging.info(f"restoring model {latest_check_point}") |
|
saver.restore(sess, latest_check_point) |
|
|
|
picks = [] |
|
amps = [] if args.amplitude else None |
|
if args.plot_figure: |
|
multiprocessing.set_start_method("spawn") |
|
pool = multiprocessing.Pool(multiprocessing.cpu_count()) |
|
|
|
for _ in tqdm(range(0, data_reader.num_data, batch_size), desc="Pred"): |
|
if args.amplitude: |
|
pred_batch, X_batch, amp_batch, fname_batch, t0_batch, station_batch = sess.run( |
|
[model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]], |
|
feed_dict={model.drop_rate: 0, model.is_training: False}, |
|
) |
|
|
|
else: |
|
pred_batch, X_batch, fname_batch, t0_batch, station_batch = sess.run( |
|
[model.preds, batch[0], batch[1], batch[2], batch[3]], |
|
feed_dict={model.drop_rate: 0, model.is_training: False}, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
waveforms = None |
|
if args.amplitude: |
|
waveforms = amp_batch |
|
|
|
picks_ = extract_picks( |
|
preds=pred_batch, |
|
file_names=fname_batch, |
|
station_ids=station_batch, |
|
begin_times=t0_batch, |
|
config=args, |
|
waveforms=waveforms, |
|
use_amplitude=args.amplitude, |
|
dt=1.0 / args.sampling_rate, |
|
) |
|
|
|
picks.extend(picks_) |
|
|
|
|
|
if len(fname_batch) == 1: |
|
df = pd.DataFrame(picks_) |
|
df = df[df["phase_index"] > 10] |
|
if not os.path.exists(os.path.join(args.result_dir, "picks")): |
|
os.makedirs(os.path.join(args.result_dir, "picks")) |
|
df = df[ |
|
[ |
|
"station_id", |
|
"begin_time", |
|
"phase_index", |
|
"phase_time", |
|
"phase_score", |
|
"phase_type", |
|
"phase_amplitude", |
|
"dt", |
|
] |
|
] |
|
df.to_csv( |
|
os.path.join( |
|
args.result_dir, "picks", fname_batch[0].decode().split("/")[-1].rstrip(".mseed") + ".csv" |
|
), |
|
index=False, |
|
) |
|
|
|
if args.plot_figure: |
|
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)): |
|
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch] |
|
else: |
|
fname_batch = [x.decode() for x in fname_batch] |
|
pool.starmap( |
|
partial( |
|
plot_waveform, |
|
figure_dir=figure_dir, |
|
), |
|
|
|
zip(X_batch, pred_batch, fname_batch), |
|
) |
|
|
|
if args.save_prob: |
|
|
|
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)): |
|
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch] |
|
else: |
|
fname_batch = [x.decode() for x in fname_batch] |
|
save_prob_h5(pred_batch, fname_batch, prob_h5) |
|
|
|
if len(picks) > 0: |
|
|
|
|
|
df = pd.DataFrame(picks) |
|
|
|
|
|
|
|
|
|
|
|
|
|
base_columns = [ |
|
"station_id", |
|
"begin_time", |
|
"phase_index", |
|
"phase_time", |
|
"phase_score", |
|
"phase_type", |
|
"file_name", |
|
] |
|
if args.amplitude: |
|
base_columns.append("phase_amplitude") |
|
base_columns.append("phase_amp") |
|
df["phase_amp"] = df["phase_amplitude"] |
|
|
|
df = df[base_columns] |
|
df.to_csv(os.path.join(args.result_dir, args.result_fname + ".csv"), index=False) |
|
|
|
print( |
|
f"Done with {len(df[df['phase_type'] == 'P'])} P-picks and {len(df[df['phase_type'] == 'S'])} S-picks" |
|
) |
|
else: |
|
print(f"Done with 0 P-picks and 0 S-picks") |
|
return 0 |
|
|
|
|
|
def main(args): |
|
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO) |
|
|
|
with tf.compat.v1.name_scope("create_inputs"): |
|
if args.format == "mseed_array": |
|
data_reader = DataReader_mseed_array( |
|
data_dir=args.data_dir, |
|
data_list=args.data_list, |
|
stations=args.stations, |
|
amplitude=args.amplitude, |
|
highpass_filter=args.highpass_filter, |
|
) |
|
else: |
|
data_reader = DataReader_pred( |
|
format=args.format, |
|
data_dir=args.data_dir, |
|
data_list=args.data_list, |
|
hdf5_file=args.hdf5_file, |
|
hdf5_group=args.hdf5_group, |
|
amplitude=args.amplitude, |
|
highpass_filter=args.highpass_filter, |
|
response_xml=args.response_xml, |
|
sampling_rate=args.sampling_rate, |
|
) |
|
|
|
pred_fn(args, data_reader, log_dir=args.result_dir) |
|
|
|
return |
|
|
|
|
|
if __name__ == "__main__": |
|
args = read_args() |
|
main(args) |
|
|