AI-RESEARCHER-2024's picture
Upload 3 files
6052ea0 verified
import gradio as gr
import tensorflow as tf
import numpy as np
# Load the trained model
model = tf.keras.models.load_model('model.h5')
print("Model loaded successfully!")
def preprocess_image(image):
"""Process the input image to match MNIST format"""
# Convert to grayscale
image = image.convert('L')
# Resize to 28x28
image = image.resize((28, 28))
# Convert to numpy array and normalize
image_array = np.array(image)
image_array = image_array / 255.0
# Reshape to match model input
image_array = np.expand_dims(image_array, axis=0)
return image_array
def predict_digit(image):
if image is None:
return None
# Preprocess the image
processed_image = preprocess_image(image)
# Make prediction
predictions = model.predict(processed_image)
pred_scores = tf.nn.softmax(predictions[0]).numpy()
pred_class = np.argmax(pred_scores)
# Create result string
result = f"Prediction: {pred_class}"
return result
# Create Gradio interface
demo = gr.Interface(
fn=predict_digit,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Result"),
title="MNIST Digit Recognizer",
description="Upload a digit from 0-9 and the model will predict which digit it is.",
examples=None,
)
if __name__ == "__main__":
demo.launch()