AI-Cyber's picture
Upload 123 files
8d7921b
from .builder import DATASETS
from .custom import CustomDataset
from IPython import embed
@DATASETS.register_module()
class MapillaryDataset(CustomDataset):
"""Mapillary dataset.
"""
CLASSES = ('Bird', 'Ground Animal', 'Curb', 'Fence', 'Guard Rail', 'Barrier',
'Wall', 'Bike Lane', 'Crosswalk - Plain', 'Curb Cut', 'Parking', 'Pedestrian Area',
'Rail Track', 'Road', 'Service Lane', 'Sidewalk', 'Bridge', 'Building', 'Tunnel',
'Person', 'Bicyclist', 'Motorcyclist', 'Other Rider', 'Lane Marking - Crosswalk',
'Lane Marking - General', 'Mountain', 'Sand', 'Sky', 'Snow', 'Terrain', 'Vegetation',
'Water', 'Banner', 'Bench', 'Bike Rack', 'Billboard', 'Catch Basin', 'CCTV Camera',
'Fire Hydrant', 'Junction Box', 'Mailbox', 'Manhole', 'Phone Booth', 'Pothole',
'Street Light', 'Pole', 'Traffic Sign Frame', 'Utility Pole', 'Traffic Light',
'Traffic Sign (Back)', 'Traffic Sign (Front)', 'Trash Can', 'Bicycle', 'Boat',
'Bus', 'Car', 'Caravan', 'Motorcycle', 'On Rails', 'Other Vehicle', 'Trailer',
'Truck', 'Wheeled Slow', 'Car Mount', 'Ego Vehicle', 'Unlabeled')
PALETTE = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 153],
[180, 165, 180], [90, 120, 150], [
102, 102, 156], [128, 64, 255],
[140, 140, 200], [170, 170, 170], [250, 170, 160], [96, 96, 96],
[230, 150, 140], [128, 64, 128], [
110, 110, 110], [244, 35, 232],
[150, 100, 100], [70, 70, 70], [150, 120, 90], [220, 20, 60],
[255, 0, 0], [255, 0, 100], [255, 0, 200], [200, 128, 128],
[255, 255, 255], [64, 170, 64], [230, 160, 50], [70, 130, 180],
[190, 255, 255], [152, 251, 152], [107, 142, 35], [0, 170, 30],
[255, 255, 128], [250, 0, 30], [100, 140, 180], [220, 220, 220],
[220, 128, 128], [222, 40, 40], [100, 170, 30], [40, 40, 40],
[33, 33, 33], [100, 128, 160], [142, 0, 0], [70, 100, 150],
[210, 170, 100], [153, 153, 153], [128, 128, 128], [0, 0, 80],
[250, 170, 30], [192, 192, 192], [220, 220, 0], [140, 140, 20],
[119, 11, 32], [150, 0, 255], [
0, 60, 100], [0, 0, 142], [0, 0, 90],
[0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110], [0, 0, 70],
[0, 0, 192], [32, 32, 32], [120, 10, 10], [0, 0, 0]]
def __init__(self, **kwargs):
super(MapillaryDataset, self).__init__(
img_suffix='.jpg',
seg_map_suffix='.png',
reduce_zero_label=False,
**kwargs)