Spaces:
Running
Running
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized | |
from minigpt4.common.utils import get_abs_path, is_url | |
from omegaconf import OmegaConf | |
class BaseModel(nn.Module): | |
"""Base class for models.""" | |
def __init__(self): | |
super().__init__() | |
def device(self): | |
return list(self.parameters())[0].device | |
def load_checkpoint(self, url_or_filename): | |
""" | |
Load from a finetuned checkpoint. | |
This should expect no mismatch in the model keys and the checkpoint keys. | |
""" | |
if is_url(url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location="cpu") | |
else: | |
raise RuntimeError("checkpoint url or path is invalid") | |
if "model" in checkpoint.keys(): | |
state_dict = checkpoint["model"] | |
else: | |
state_dict = checkpoint | |
msg = self.load_state_dict(state_dict, strict=False) | |
logging.info("Missing keys {}".format(msg.missing_keys)) | |
logging.info("load checkpoint from %s" % url_or_filename) | |
return msg | |
def from_pretrained(cls, model_type): | |
""" | |
Build a pretrained model from default configuration file, specified by model_type. | |
Args: | |
- model_type (str): model type, specifying architecture and checkpoints. | |
Returns: | |
- model (nn.Module): pretrained or finetuned model, depending on the configuration. | |
""" | |
model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model | |
model = cls.from_config(model_cfg) | |
return model | |
def default_config_path(cls, model_type): | |
assert ( | |
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT | |
), "Unknown model type {}".format(model_type) | |
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) | |
def load_checkpoint_from_config(self, cfg, **kwargs): | |
""" | |
Load checkpoint as specified in the config file. | |
If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. | |
When loading the pretrained model, each task-specific architecture may define their | |
own load_from_pretrained() method. | |
""" | |
load_finetuned = cfg.get("load_finetuned", True) | |
if load_finetuned: | |
finetune_path = cfg.get("finetuned", None) | |
assert ( | |
finetune_path is not None | |
), "Found load_finetuned is True, but finetune_path is None." | |
self.load_checkpoint(url_or_filename=finetune_path) | |
else: | |
# load pre-trained weights | |
pretrain_path = cfg.get("pretrained", None) | |
assert "Found load_finetuned is False, but pretrain_path is None." | |
self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) | |
def before_evaluation(self, **kwargs): | |
pass | |
def show_n_params(self, return_str=True): | |
tot = 0 | |
for p in self.parameters(): | |
w = 1 | |
for x in p.shape: | |
w *= x | |
tot += w | |
if return_str: | |
if tot >= 1e6: | |
return "{:.1f}M".format(tot / 1e6) | |
else: | |
return "{:.1f}K".format(tot / 1e3) | |
else: | |
return tot | |
class BaseEncoder(nn.Module): | |
""" | |
Base class for primitive encoders, such as ViT, TimeSformer, etc. | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward_features(self, samples, **kwargs): | |
raise NotImplementedError | |
def device(self): | |
return list(self.parameters())[0].device | |
class SharedQueueMixin: | |
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None): | |
# gather keys before updating queue | |
image_feats = concat_all_gather(image_feat) | |
text_feats = concat_all_gather(text_feat) | |
batch_size = image_feats.shape[0] | |
ptr = int(self.queue_ptr) | |
assert self.queue_size % batch_size == 0 # for simplicity | |
# replace the keys at ptr (dequeue and enqueue) | |
self.image_queue[:, ptr : ptr + batch_size] = image_feats.T | |
self.text_queue[:, ptr : ptr + batch_size] = text_feats.T | |
if idxs is not None: | |
idxs = concat_all_gather(idxs) | |
self.idx_queue[:, ptr : ptr + batch_size] = idxs.T | |
ptr = (ptr + batch_size) % self.queue_size # move pointer | |
self.queue_ptr[0] = ptr | |
class MomentumDistilationMixin: | |
def copy_params(self): | |
for model_pair in self.model_pairs: | |
for param, param_m in zip( | |
model_pair[0].parameters(), model_pair[1].parameters() | |
): | |
param_m.data.copy_(param.data) # initialize | |
param_m.requires_grad = False # not update by gradient | |
def _momentum_update(self): | |
for model_pair in self.model_pairs: | |
for param, param_m in zip( | |
model_pair[0].parameters(), model_pair[1].parameters() | |
): | |
param_m.data = param_m.data * self.momentum + param.data * ( | |
1.0 - self.momentum | |
) | |
class GatherLayer(torch.autograd.Function): | |
""" | |
Gather tensors from all workers with support for backward propagation: | |
This implementation does not cut the gradients as torch.distributed.all_gather does. | |
""" | |
def forward(ctx, x): | |
output = [ | |
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) | |
] | |
torch.distributed.all_gather(output, x) | |
return tuple(output) | |
def backward(ctx, *grads): | |
all_gradients = torch.stack(grads) | |
torch.distributed.all_reduce(all_gradients) | |
return all_gradients[torch.distributed.get_rank()] | |
def all_gather_with_grad(tensors): | |
""" | |
Performs all_gather operation on the provided tensors. | |
Graph remains connected for backward grad computation. | |
""" | |
# Queue the gathered tensors | |
world_size = torch.distributed.get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
# tensor_all = GatherLayer.apply(tensors) | |
tensor_all = GatherLayer.apply(tensors) | |
return torch.cat(tensor_all, dim=0) | |
def concat_all_gather(tensor): | |
""" | |
Performs all_gather operation on the provided tensors. | |
*** Warning ***: torch.distributed.all_gather has no gradient. | |
""" | |
# if use distributed training | |
if not is_dist_avail_and_initialized(): | |
return tensor | |
tensors_gather = [ | |
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) | |
] | |
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) | |
output = torch.cat(tensors_gather, dim=0) | |
return output | |
def tile(x, dim, n_tile): | |
init_dim = x.size(dim) | |
repeat_idx = [1] * x.dim() | |
repeat_idx[dim] = n_tile | |
x = x.repeat(*(repeat_idx)) | |
order_index = torch.LongTensor( | |
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]) | |
) | |
return torch.index_select(x, dim, order_index.to(x.device)) | |