ProteinGPT-Llama3 / eval /eval_esm.py
EdwardoSunny's picture
finished
85ab89d
import argparse
import os
import random
import sys
import time
import tqdm
sys.path.insert(0, "..")
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
import sys
import esm
import json
DATASET_SPEC = "/home/ubuntu/proteinchat/dataset.json"
ANN_PATH = "/home/ubuntu/proteinchat/data/qa_all.json"
PDB_PATH = "/home/ubuntu/pt"
SEQ_PATH = "/home/ubuntu/seq"
OUTPUT_SAVE_PATH = "/home/ubuntu/proteinchat/eval/results/outputs"
annotation = open(ANN_PATH, "r")
annotation = json.load(annotation)
dataset = open(DATASET_SPEC, "r")
dataset = json.load(dataset)
all_prots = dataset["test"]
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--model", type=str, required=True, help="specify the model to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
raw_output = {}
score_output = {}
START_SAMPLES = 0
# END_SAMPLES = 8806
END_SAMPLES = 160
all_prots = all_prots[START_SAMPLES : END_SAMPLES]
for prot in tqdm.tqdm(all_prots):
curr_prot_ann = annotation[prot]
pdb_path = os.path.join(PDB_PATH, f"{prot}.pt")
seq_path = os.path.join(SEQ_PATH, f"{prot}.pt")
seq_embedding = torch.load(seq_path, map_location=torch.device('cpu'))
sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id))
if (seq_embedding.shape[1] > 384):
continue
raw_output[prot] = []
pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu'))
sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id))
for ann in curr_prot_ann:
d = {}
d["Q"] = ann["Q"]
chat_state = CONV_VISION.copy()
img_list = []
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list)
img_list = [mat.half() for mat in img_list]
chat.ask(ann["Q"], chat_state)
ans = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=1,
temperature=0.7,
max_new_tokens=384,
max_length=2048)[0]
d["A"] = ans
raw_output[prot].append(d)
with open(os.path.join(OUTPUT_SAVE_PATH, f"{args.model}_eval_output.json"), 'w') as fp:
json.dump(raw_output, fp, indent=4)