Spaces:
Running
Running
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import datetime | |
import json | |
import logging | |
import os | |
import time | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import webdataset as wds | |
from minigpt4.common.dist_utils import ( | |
download_cached_file, | |
get_rank, | |
get_world_size, | |
is_main_process, | |
main_process, | |
) | |
from minigpt4.common.registry import registry | |
from minigpt4.common.utils import is_url | |
from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset | |
from minigpt4.datasets.datasets.dataloader_utils import ( | |
IterLoader, | |
MultiIterLoader, | |
PrefetchLoader, | |
) | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.data import DataLoader, DistributedSampler, default_collate | |
class RunnerBase: | |
""" | |
A runner class to train and evaluate a model given a task and datasets. | |
The runner uses pytorch distributed data parallel by default. Future release | |
will support other distributed frameworks. | |
""" | |
def __init__(self, cfg, task, model, datasets, job_id): | |
self.config = cfg | |
self.job_id = job_id | |
self.task = task | |
self.datasets = datasets | |
self._model = model | |
self._wrapped_model = None | |
self._device = None | |
self._optimizer = None | |
self._scaler = None | |
self._dataloaders = None | |
self._lr_sched = None | |
self.start_epoch = 0 | |
# self.setup_seeds() | |
self.setup_output_dir() | |
def device(self): | |
if self._device is None: | |
self._device = torch.device(self.config.run_cfg.device) | |
return self._device | |
def use_distributed(self): | |
return self.config.run_cfg.distributed | |
def model(self): | |
""" | |
A property to get the DDP-wrapped model on the device. | |
""" | |
# move model to device | |
if self._model.device != self.device: | |
self._model = self._model.to(self.device) | |
# distributed training wrapper | |
if self.use_distributed: | |
if self._wrapped_model is None: | |
self._wrapped_model = DDP( | |
self._model, device_ids=[self.config.run_cfg.gpu] | |
) | |
else: | |
self._wrapped_model = self._model | |
return self._wrapped_model | |
def optimizer(self): | |
# TODO make optimizer class and configurations | |
if self._optimizer is None: | |
num_parameters = 0 | |
p_wd, p_non_wd = [], [] | |
for n, p in self.model.named_parameters(): | |
if not p.requires_grad: | |
continue # frozen weights | |
print(n) | |
if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n: | |
p_non_wd.append(p) | |
else: | |
p_wd.append(p) | |
num_parameters += p.data.nelement() | |
logging.info("number of trainable parameters: %d" % num_parameters) | |
optim_params = [ | |
{ | |
"params": p_wd, | |
"weight_decay": float(self.config.run_cfg.weight_decay), | |
}, | |
{"params": p_non_wd, "weight_decay": 0}, | |
] | |
beta2 = self.config.run_cfg.get("beta2", 0.999) | |
self._optimizer = torch.optim.AdamW( | |
optim_params, | |
lr=float(self.config.run_cfg.init_lr), | |
weight_decay=float(self.config.run_cfg.weight_decay), | |
betas=(0.9, beta2), | |
) | |
return self._optimizer | |
def scaler(self): | |
amp = self.config.run_cfg.get("amp", False) | |
if amp: | |
if self._scaler is None: | |
self._scaler = torch.cuda.amp.GradScaler() | |
return self._scaler | |
def lr_scheduler(self): | |
""" | |
A property to get and create learning rate scheduler by split just in need. | |
""" | |
if self._lr_sched is None: | |
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched) | |
# max_epoch = self.config.run_cfg.max_epoch | |
max_epoch = self.max_epoch | |
# min_lr = self.config.run_cfg.min_lr | |
min_lr = self.min_lr | |
# init_lr = self.config.run_cfg.init_lr | |
init_lr = self.init_lr | |
# optional parameters | |
decay_rate = self.config.run_cfg.get("lr_decay_rate", None) | |
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1) | |
warmup_steps = self.config.run_cfg.get("warmup_steps", 0) | |
iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None) | |
if iters_per_epoch is None: | |
try: | |
iters_per_epoch = len(self.dataloaders['train'].loaders[0]) | |
except (AttributeError, TypeError): | |
iters_per_epoch = 10000 | |
self._lr_sched = lr_sched_cls( | |
optimizer=self.optimizer, | |
max_epoch=max_epoch, | |
iters_per_epoch=iters_per_epoch, | |
min_lr=min_lr, | |
init_lr=init_lr, | |
decay_rate=decay_rate, | |
warmup_start_lr=warmup_start_lr, | |
warmup_steps=warmup_steps, | |
) | |
return self._lr_sched | |
def dataloaders(self) -> dict: | |
""" | |
A property to get and create dataloaders by split just in need. | |
If no train_dataset_ratio is provided, concatenate map-style datasets and | |
chain wds.DataPipe datasets separately. Training set becomes a tuple | |
(ConcatDataset, ChainDataset), both are optional but at least one of them is | |
required. The resultant ConcatDataset and ChainDataset will be sampled evenly. | |
If train_dataset_ratio is provided, create a MultiIterLoader to sample | |
each dataset by ratios during training. | |
Currently do not support multiple datasets for validation and test. | |
Returns: | |
dict: {split_name: (tuples of) dataloader} | |
""" | |
if self._dataloaders is None: | |
# concatenate map-style datasets and chain wds.DataPipe datasets separately | |
# training set becomes a tuple (ConcatDataset, ChainDataset), both are | |
# optional but at least one of them is required. The resultant ConcatDataset | |
# and ChainDataset will be sampled evenly. | |
logging.info( | |
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)." | |
) | |
datasets = reorg_datasets_by_split(self.datasets) | |
self.datasets = datasets | |
# self.datasets = concat_datasets(datasets) | |
# print dataset statistics after concatenation/chaining | |
for split_name in self.datasets: | |
if isinstance(self.datasets[split_name], tuple) or isinstance( | |
self.datasets[split_name], list | |
): | |
# mixed wds.DataPipeline and torch.utils.data.Dataset | |
num_records = sum( | |
[ | |
len(d) | |
if not type(d) in [wds.DataPipeline, ChainDataset] | |
else 0 | |
for d in self.datasets[split_name] | |
] | |
) | |
else: | |
if hasattr(self.datasets[split_name], "__len__"): | |
# a single map-style dataset | |
num_records = len(self.datasets[split_name]) | |
else: | |
# a single wds.DataPipeline | |
num_records = -1 | |
logging.info( | |
"Only a single wds.DataPipeline dataset, no __len__ attribute." | |
) | |
if num_records >= 0: | |
logging.info( | |
"Loaded {} records for {} split from the dataset.".format( | |
num_records, split_name | |
) | |
) | |
# create dataloaders | |
split_names = sorted(self.datasets.keys()) | |
print("split_names") | |
print(f"split_names: {split_names}") | |
# exit() | |
datasets = [self.datasets[split] for split in split_names] | |
is_trains = [split in self.train_splits for split in split_names] | |
batch_sizes = [ | |
self.config.run_cfg.batch_size_train | |
if split == "train" | |
else self.config.run_cfg.batch_size_eval | |
for split in split_names | |
] | |
collate_fns = [] | |
for dataset in datasets: | |
if isinstance(dataset, tuple) or isinstance(dataset, list): | |
collate_fns.append([getattr(d, "collater", None) for d in dataset]) | |
else: | |
collate_fns.append(getattr(dataset, "collater", None)) | |
# def custom_collate(original_batch): | |
# max_len_protein_dim0 = -1 | |
# for pdb_json in original_batch: | |
# pdb_coords = pdb_json["pdb_coords"] | |
# shape_dim0 = pdb_coords.shape[0] | |
# max_len_protein_dim0 = max(max_len_protein_dim0, shape_dim0) | |
# # print(f"max_len_protein_dim0: {max_len_protein_dim0}") | |
# for pdb_json in original_batch: | |
# pdb_coords = pdb_json["pdb_coords"] | |
# shape_dim0 = pdb_coords.shape[0] | |
# pad1 = ((0, max_len_protein_dim0 - shape_dim0), (0, 0), (0, 0)) | |
# arr1_padded = np.pad(pdb_coords, pad1, mode='constant', ) | |
# pdb_json["pdb_coords"] = arr1_padded | |
# | |
# # for pdb_json in original_batch: | |
# # print(f"id: {pdb_json['pdb_id']}, shape: {pdb_json['pdb_coords'].shape}") | |
# | |
# | |
# return default_collate(original_batch) | |
# # print(collate_fns) | |
# collate_fns[0][0] = custom_collate | |
# print(collate_fns) | |
dataloaders = self.create_loaders( | |
datasets=datasets, | |
num_workers=self.config.run_cfg.num_workers, | |
batch_sizes=batch_sizes, | |
is_trains=is_trains, | |
collate_fns=collate_fns, | |
) | |
# print(dataloaders[0].loaders) | |
# print(collate_fns) | |
# | |
# print(datasets) | |
# # exit() | |
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)} | |
return self._dataloaders | |
def cuda_enabled(self): | |
return self.device.type == "cuda" | |
def max_epoch(self): | |
return int(self.config.run_cfg.max_epoch) | |
def log_freq(self): | |
log_freq = self.config.run_cfg.get("log_freq", 50) | |
return int(log_freq) | |
def init_lr(self): | |
return float(self.config.run_cfg.init_lr) | |
def min_lr(self): | |
return float(self.config.run_cfg.min_lr) | |
def accum_grad_iters(self): | |
return int(self.config.run_cfg.get("accum_grad_iters", 1)) | |
def valid_splits(self): | |
valid_splits = self.config.run_cfg.get("valid_splits", []) | |
if len(valid_splits) == 0: | |
logging.info("No validation splits found.") | |
return valid_splits | |
def test_splits(self): | |
test_splits = self.config.run_cfg.get("test_splits", []) | |
return test_splits | |
def train_splits(self): | |
train_splits = self.config.run_cfg.get("train_splits", []) | |
if len(train_splits) == 0: | |
logging.info("Empty train splits.") | |
return train_splits | |
def evaluate_only(self): | |
""" | |
Set to True to skip training. | |
""" | |
return self.config.run_cfg.evaluate | |
def use_dist_eval_sampler(self): | |
return self.config.run_cfg.get("use_dist_eval_sampler", True) | |
def resume_ckpt_path(self): | |
return self.config.run_cfg.get("resume_ckpt_path", None) | |
def train_loader(self): | |
train_dataloader = self.dataloaders["train"] | |
return train_dataloader | |
def setup_output_dir(self): | |
lib_root = Path(registry.get_path("library_root")) | |
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id | |
result_dir = output_dir / "result" | |
output_dir.mkdir(parents=True, exist_ok=True) | |
result_dir.mkdir(parents=True, exist_ok=True) | |
registry.register_path("result_dir", str(result_dir)) | |
registry.register_path("output_dir", str(output_dir)) | |
self.result_dir = result_dir | |
self.output_dir = output_dir | |
def train(self): | |
start_time = time.time() | |
best_agg_metric = 0 | |
best_epoch = 0 | |
self.log_config() | |
# resume from checkpoint if specified | |
if not self.evaluate_only and self.resume_ckpt_path is not None: | |
self._load_checkpoint(self.resume_ckpt_path) | |
for cur_epoch in range(self.start_epoch, self.max_epoch): | |
# training phase | |
if not self.evaluate_only: | |
logging.info("Start training") | |
train_stats = self.train_epoch(cur_epoch) | |
self.log_stats(split_name="train", stats=train_stats) | |
# evaluation phase | |
if len(self.valid_splits) > 0: | |
for split_name in self.valid_splits: | |
logging.info("Evaluating on {}.".format(split_name)) | |
val_log = self.eval_epoch( | |
split_name=split_name, cur_epoch=cur_epoch | |
) | |
if val_log is not None: | |
if is_main_process(): | |
assert ( | |
"agg_metrics" in val_log | |
), "No agg_metrics found in validation log." | |
agg_metrics = val_log["agg_metrics"] | |
if agg_metrics > best_agg_metric and split_name == "val": | |
best_epoch, best_agg_metric = cur_epoch, agg_metrics | |
self._save_checkpoint(cur_epoch, is_best=True) | |
val_log.update({"best_epoch": best_epoch}) | |
self.log_stats(val_log, split_name) | |
else: | |
# if no validation split is provided, we just save the checkpoint at the end of each epoch. | |
if not self.evaluate_only: | |
self._save_checkpoint(cur_epoch, is_best=False) | |
if self.evaluate_only: | |
break | |
if self.config.run_cfg.distributed: | |
dist.barrier() | |
# testing phase | |
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch | |
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only) | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logging.info("Training time {}".format(total_time_str)) | |
def evaluate(self, cur_epoch="best", skip_reload=False): | |
test_logs = dict() | |
if len(self.test_splits) > 0: | |
for split_name in self.test_splits: | |
test_logs[split_name] = self.eval_epoch( | |
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload | |
) | |
return test_logs | |
def train_epoch(self, epoch): | |
# train | |
self.model.train() | |
return self.task.train_epoch( | |
epoch=epoch, | |
model=self.model, | |
data_loader=self.train_loader, | |
optimizer=self.optimizer, | |
scaler=self.scaler, | |
lr_scheduler=self.lr_scheduler, | |
cuda_enabled=self.cuda_enabled, | |
log_freq=self.log_freq, | |
accum_grad_iters=self.accum_grad_iters, | |
) | |
def eval_epoch(self, split_name, cur_epoch, skip_reload=False): | |
""" | |
Evaluate the model on a given split. | |
Args: | |
split_name (str): name of the split to evaluate on. | |
cur_epoch (int): current epoch. | |
skip_reload_best (bool): whether to skip reloading the best checkpoint. | |
During training, we will reload the best checkpoint for validation. | |
During testing, we will use provided weights and skip reloading the best checkpoint . | |
""" | |
data_loader = self.dataloaders.get(split_name, None) | |
assert data_loader, "data_loader for split {} is None.".format(split_name) | |
# TODO In validation, you need to compute loss as well as metrics | |
# TODO consider moving to model.before_evaluation() | |
model = self.unwrap_dist_model(self.model) | |
if not skip_reload and cur_epoch == "best": | |
model = self._reload_best_model(model) | |
model.eval() | |
self.task.before_evaluation( | |
model=model, | |
dataset=self.datasets[split_name], | |
) | |
results = self.task.evaluation(model, data_loader) | |
if results is not None: | |
return self.task.after_evaluation( | |
val_result=results, | |
split_name=split_name, | |
epoch=cur_epoch, | |
) | |
def unwrap_dist_model(self, model): | |
if self.use_distributed: | |
return model.module | |
else: | |
return model | |
def create_loaders( | |
self, | |
datasets, | |
num_workers, | |
batch_sizes, | |
is_trains, | |
collate_fns, | |
dataset_ratios=None, | |
): | |
""" | |
Create dataloaders for training and validation. | |
""" | |
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn): | |
# create a single dataloader for each split | |
if isinstance(dataset, ChainDataset) or isinstance( | |
dataset, wds.DataPipeline | |
): | |
# wds.WebdDataset instance are chained together | |
# webdataset.DataPipeline has its own sampler and collate_fn | |
loader = iter( | |
DataLoader( | |
dataset, | |
batch_size=bsz, | |
num_workers=num_workers, | |
pin_memory=True, | |
) | |
) | |
else: | |
# map-style dataset are concatenated together | |
# setup distributed sampler | |
if self.use_distributed: | |
sampler = DistributedSampler( | |
dataset, | |
shuffle=is_train, | |
num_replicas=get_world_size(), | |
rank=get_rank(), | |
) | |
if not self.use_dist_eval_sampler: | |
# e.g. retrieval evaluation | |
sampler = sampler if is_train else None | |
else: | |
sampler = None | |
loader = DataLoader( | |
dataset, | |
batch_size=bsz, | |
num_workers=num_workers, | |
pin_memory=True, | |
sampler=sampler, | |
shuffle=sampler is None and is_train, | |
collate_fn=collate_fn, | |
drop_last=True if is_train else False, | |
) | |
loader = PrefetchLoader(loader) | |
if is_train: | |
loader = IterLoader(loader, use_distributed=self.use_distributed) | |
return loader | |
loaders = [] | |
for dataset, bsz, is_train, collate_fn in zip( | |
datasets, batch_sizes, is_trains, collate_fns | |
): | |
if isinstance(dataset, list) or isinstance(dataset, tuple): | |
if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None: | |
dataset_ratios = [d.sample_ratio for d in dataset] | |
loader = MultiIterLoader( | |
loaders=[ | |
_create_loader(d, num_workers, bsz, is_train, collate_fn[i]) | |
for i, d in enumerate(dataset) | |
], | |
ratios=dataset_ratios, | |
) | |
else: | |
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn) | |
loaders.append(loader) | |
return loaders | |
def _save_checkpoint(self, cur_epoch, is_best=False): | |
""" | |
Save the checkpoint at the current epoch. | |
""" | |
model_no_ddp = self.unwrap_dist_model(self.model) | |
param_grad_dic = { | |
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters() | |
} | |
state_dict = model_no_ddp.state_dict() | |
for k in list(state_dict.keys()): | |
if k in param_grad_dic.keys() and not param_grad_dic[k]: | |
# delete parameters that do not require gradient | |
del state_dict[k] | |
save_obj = { | |
"model": state_dict, | |
"optimizer": self.optimizer.state_dict(), | |
"config": self.config.to_dict(), | |
"scaler": self.scaler.state_dict() if self.scaler else None, | |
"epoch": cur_epoch, | |
} | |
save_to = os.path.join( | |
self.output_dir, | |
"checkpoint_{}.pth".format("best" if is_best else cur_epoch), | |
) | |
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to)) | |
torch.save(save_obj, save_to) | |
def _reload_best_model(self, model): | |
""" | |
Load the best checkpoint for evaluation. | |
""" | |
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth") | |
logging.info("Loading checkpoint from {}.".format(checkpoint_path)) | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
try: | |
model.load_state_dict(checkpoint["model"]) | |
except RuntimeError as e: | |
logging.warning( | |
""" | |
Key mismatch when loading checkpoint. This is expected if only part of the model is saved. | |
Trying to load the model with strict=False. | |
""" | |
) | |
model.load_state_dict(checkpoint["model"], strict=False) | |
return model | |
def _load_checkpoint(self, url_or_filename): | |
""" | |
Resume from a checkpoint. | |
""" | |
if is_url(url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location=self.device) | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location=self.device) | |
else: | |
raise RuntimeError("checkpoint url or path is invalid") | |
state_dict = checkpoint["model"] | |
self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False) | |
self.optimizer.load_state_dict(checkpoint["optimizer"]) | |
if self.scaler and "scaler" in checkpoint: | |
self.scaler.load_state_dict(checkpoint["scaler"]) | |
self.start_epoch = checkpoint["epoch"] + 1 | |
logging.info("Resume checkpoint from {}".format(url_or_filename)) | |
def log_stats(self, stats, split_name): | |
if isinstance(stats, dict): | |
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}} | |
with open(os.path.join(self.output_dir, "log.txt"), "a") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
elif isinstance(stats, list): | |
pass | |
def log_config(self): | |
with open(os.path.join(self.output_dir, "log.txt"), "a") as f: | |
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n") | |