Spaces:
Running
Running
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from minigpt4.common.config import Config | |
from minigpt4.common.dist_utils import get_rank | |
from minigpt4.common.registry import registry | |
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION | |
# imports modules for registration | |
from minigpt4.datasets.builders import * | |
from minigpt4.models import * | |
from minigpt4.processors import * | |
from minigpt4.runners import * | |
from minigpt4.tasks import * | |
import sys | |
import esm | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", required=True, help="path to configuration file.") | |
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument("--pdb", help="specifiy where the protein file is (.pt)") | |
parser.add_argument("--seq", help="specifiy where the sequence file is (.pt)") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('Initializing Chat') | |
args = parse_args() | |
cfg = Config(args) | |
model_config = cfg.model_cfg | |
model_config.device_8bit = args.gpu_id | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) | |
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) | |
print('Initialization Finished') | |
chat_state = CONV_VISION.copy() | |
img_list = [] | |
pdb_path = args.pdb | |
seq_path = args.seq | |
if pdb_path[-3:] == ".pt": | |
pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu')) | |
sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id)) | |
if seq_path[-3:] == ".pt": | |
seq_embedding = torch.load(seq_path, map_location=torch.device('cpu')) | |
sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id)) | |
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list) | |
print(llm_message) | |
img_list = [mat.half() for mat in img_list] | |
while True: | |
user_input = input(">") | |
if (len(user_input) == 0): | |
print("USER INPUT CANNOT BE EMPTY!") | |
continue | |
elif (user_input.lower() == "exit()"): | |
break | |
chat.ask(user_input, chat_state) | |
llm_message = chat.answer(conv=chat_state, | |
img_list=img_list, | |
num_beams=1, | |
temperature=0.7, | |
max_new_tokens=300, | |
max_length=2000)[0] | |
print("B: ", llm_message) | |