Spaces:
Running
Running
# Contents of this file are from the open source code for | |
# | |
# Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., & Dror, R. (2020). | |
# Learning from Protein Structure with Geometric Vector Perceptrons. In | |
# International Conference on Learning Representations. | |
# | |
# MIT License | |
# | |
# Copyright (c) 2020 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, Ron Dror | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import typing as T | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
print("gvp_module1") | |
from torch_geometric.nn import MessagePassing | |
print("gvp_module2") | |
from torch_scatter import scatter_add, scatter | |
def tuple_size(tp): | |
return tuple([0 if a is None else a.size() for a in tp]) | |
def tuple_sum(tp1, tp2): | |
s1, v1 = tp1 | |
s2, v2 = tp2 | |
if v2 is None and v2 is None: | |
return (s1 + s2, None) | |
return (s1 + s2, v1 + v2) | |
def tuple_cat(*args, dim=-1): | |
''' | |
Concatenates any number of tuples (s, V) elementwise. | |
:param dim: dimension along which to concatenate when viewed | |
as the `dim` index for the scalar-channel tensors. | |
This means that `dim=-1` will be applied as | |
`dim=-2` for the vector-channel tensors. | |
''' | |
dim %= len(args[0][0].shape) | |
s_args, v_args = list(zip(*args)) | |
return torch.cat(s_args, dim=dim), torch.cat(v_args, dim=dim) | |
def tuple_index(x, idx): | |
''' | |
Indexes into a tuple (s, V) along the first dimension. | |
:param idx: any object which can be used to index into a `torch.Tensor` | |
''' | |
return x[0][idx], x[1][idx] | |
def randn(n, dims, device="cpu"): | |
''' | |
Returns random tuples (s, V) drawn elementwise from a normal distribution. | |
:param n: number of data points | |
:param dims: tuple of dimensions (n_scalar, n_vector) | |
:return: (s, V) with s.shape = (n, n_scalar) and | |
V.shape = (n, n_vector, 3) | |
''' | |
return torch.randn(n, dims[0], device=device), \ | |
torch.randn(n, dims[1], 3, device=device) | |
def _norm_no_nan(x, axis=-1, keepdims=False, eps=1e-8, sqrt=True): | |
''' | |
L2 norm of tensor clamped above a minimum value `eps`. | |
:param sqrt: if `False`, returns the square of the L2 norm | |
''' | |
# clamp is slow | |
# out = torch.clamp(torch.sum(torch.square(x), axis, keepdims), min=eps) | |
out = torch.sum(torch.square(x), axis, keepdims) + eps | |
return torch.sqrt(out) if sqrt else out | |
def _split(x, nv): | |
''' | |
Splits a merged representation of (s, V) back into a tuple. | |
Should be used only with `_merge(s, V)` and only if the tuple | |
representation cannot be used. | |
:param x: the `torch.Tensor` returned from `_merge` | |
:param nv: the number of vector channels in the input to `_merge` | |
''' | |
v = torch.reshape(x[..., -3*nv:], x.shape[:-1] + (nv, 3)) | |
s = x[..., :-3*nv] | |
return s, v | |
def _merge(s, v): | |
''' | |
Merges a tuple (s, V) into a single `torch.Tensor`, where the | |
vector channels are flattened and appended to the scalar channels. | |
Should be used only if the tuple representation cannot be used. | |
Use `_split(x, nv)` to reverse. | |
''' | |
v = torch.reshape(v, v.shape[:-2] + (3*v.shape[-2],)) | |
return torch.cat([s, v], -1) | |
class GVP(nn.Module): | |
''' | |
Geometric Vector Perceptron. See manuscript and README.md | |
for more details. | |
:param in_dims: tuple (n_scalar, n_vector) | |
:param out_dims: tuple (n_scalar, n_vector) | |
:param h_dim: intermediate number of vector channels, optional | |
:param activations: tuple of functions (scalar_act, vector_act) | |
:param tuple_io: whether to keep accepting tuple inputs and outputs when vi | |
or vo = 0 | |
''' | |
def __init__(self, in_dims, out_dims, h_dim=None, vector_gate=False, | |
activations=(F.relu, torch.sigmoid), tuple_io=True, | |
eps=1e-8): | |
super(GVP, self).__init__() | |
self.si, self.vi = in_dims | |
self.so, self.vo = out_dims | |
self.tuple_io = tuple_io | |
if self.vi: | |
self.h_dim = h_dim or max(self.vi, self.vo) | |
self.wh = nn.Linear(self.vi, self.h_dim, bias=False) | |
self.ws = nn.Linear(self.h_dim + self.si, self.so) | |
if self.vo: | |
self.wv = nn.Linear(self.h_dim, self.vo, bias=False) | |
if vector_gate: | |
self.wg = nn.Linear(self.so, self.vo) | |
else: | |
self.ws = nn.Linear(self.si, self.so) | |
self.vector_gate = vector_gate | |
self.scalar_act, self.vector_act = activations | |
self.eps = eps | |
def forward(self, x): | |
''' | |
:param x: tuple (s, V) of `torch.Tensor`, | |
or (if vectors_in is 0), a single `torch.Tensor` | |
:return: tuple (s, V) of `torch.Tensor`, | |
or (if vectors_out is 0), a single `torch.Tensor` | |
''' | |
if self.vi: | |
s, v = x | |
v = torch.transpose(v, -1, -2) | |
vh = self.wh(v) | |
vn = _norm_no_nan(vh, axis=-2, eps=self.eps) | |
s = self.ws(torch.cat([s, vn], -1)) | |
if self.scalar_act: | |
s = self.scalar_act(s) | |
if self.vo: | |
v = self.wv(vh) | |
v = torch.transpose(v, -1, -2) | |
if self.vector_gate: | |
g = self.wg(s).unsqueeze(-1) | |
else: | |
g = _norm_no_nan(v, axis=-1, keepdims=True, eps=self.eps) | |
if self.vector_act: | |
g = self.vector_act(g) | |
v = v * g | |
else: | |
if self.tuple_io: | |
assert x[1] is None | |
x = x[0] | |
s = self.ws(x) | |
if self.scalar_act: | |
s = self.scalar_act(s) | |
if self.vo: | |
v = torch.zeros(list(s.shape)[:-1] + [self.vo, 3], | |
device=s.device) | |
if self.vo: | |
return (s, v) | |
elif self.tuple_io: | |
return (s, None) | |
else: | |
return s | |
class _VDropout(nn.Module): | |
''' | |
Vector channel dropout where the elements of each | |
vector channel are dropped together. | |
''' | |
def __init__(self, drop_rate): | |
super(_VDropout, self).__init__() | |
self.drop_rate = drop_rate | |
def forward(self, x): | |
''' | |
:param x: `torch.Tensor` corresponding to vector channels | |
''' | |
if x is None: | |
return None | |
device = x.device | |
if not self.training: | |
return x | |
mask = torch.bernoulli( | |
(1 - self.drop_rate) * torch.ones(x.shape[:-1], device=device) | |
).unsqueeze(-1) | |
x = mask * x / (1 - self.drop_rate) | |
return x | |
class Dropout(nn.Module): | |
''' | |
Combined dropout for tuples (s, V). | |
Takes tuples (s, V) as input and as output. | |
''' | |
def __init__(self, drop_rate): | |
super(Dropout, self).__init__() | |
self.sdropout = nn.Dropout(drop_rate) | |
self.vdropout = _VDropout(drop_rate) | |
def forward(self, x): | |
''' | |
:param x: tuple (s, V) of `torch.Tensor`, | |
or single `torch.Tensor` | |
(will be assumed to be scalar channels) | |
''' | |
if type(x) is torch.Tensor: | |
return self.sdropout(x) | |
s, v = x | |
return self.sdropout(s), self.vdropout(v) | |
class LayerNorm(nn.Module): | |
''' | |
Combined LayerNorm for tuples (s, V). | |
Takes tuples (s, V) as input and as output. | |
''' | |
def __init__(self, dims, tuple_io=True, eps=1e-8): | |
super(LayerNorm, self).__init__() | |
self.tuple_io = tuple_io | |
self.s, self.v = dims | |
self.scalar_norm = nn.LayerNorm(self.s) | |
self.eps = eps | |
def forward(self, x): | |
''' | |
:param x: tuple (s, V) of `torch.Tensor`, | |
or single `torch.Tensor` | |
(will be assumed to be scalar channels) | |
''' | |
if not self.v: | |
if self.tuple_io: | |
return self.scalar_norm(x[0]), None | |
return self.scalar_norm(x) | |
s, v = x | |
vn = _norm_no_nan(v, axis=-1, keepdims=True, sqrt=False, eps=self.eps) | |
nonzero_mask = (vn > 2 * self.eps) | |
vn = torch.sum(vn * nonzero_mask, dim=-2, keepdim=True | |
) / (self.eps + torch.sum(nonzero_mask, dim=-2, keepdim=True)) | |
vn = torch.sqrt(vn + self.eps) | |
v = nonzero_mask * (v / vn) | |
return self.scalar_norm(s), v | |
class GVPConv(MessagePassing): | |
''' | |
Graph convolution / message passing with Geometric Vector Perceptrons. | |
Takes in a graph with node and edge embeddings, | |
and returns new node embeddings. | |
This does NOT do residual updates and pointwise feedforward layers | |
---see `GVPConvLayer`. | |
:param in_dims: input node embedding dimensions (n_scalar, n_vector) | |
:param out_dims: output node embedding dimensions (n_scalar, n_vector) | |
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector) | |
:param n_layers: number of GVPs in the message function | |
:param module_list: preconstructed message function, overrides n_layers | |
:param aggr: should be "add" if some incoming edges are masked, as in | |
a masked autoregressive decoder architecture | |
''' | |
def __init__(self, in_dims, out_dims, edge_dims, n_layers=3, | |
vector_gate=False, module_list=None, aggr="mean", eps=1e-8, | |
activations=(F.relu, torch.sigmoid)): | |
super(GVPConv, self).__init__(aggr=aggr) | |
self.eps = eps | |
self.si, self.vi = in_dims | |
self.so, self.vo = out_dims | |
self.se, self.ve = edge_dims | |
module_list = module_list or [] | |
if not module_list: | |
if n_layers == 1: | |
module_list.append( | |
GVP((2*self.si + self.se, 2*self.vi + self.ve), | |
(self.so, self.vo), activations=(None, None))) | |
else: | |
module_list.append( | |
GVP((2*self.si + self.se, 2*self.vi + self.ve), out_dims, | |
vector_gate=vector_gate, activations=activations) | |
) | |
for i in range(n_layers - 2): | |
module_list.append(GVP(out_dims, out_dims, | |
vector_gate=vector_gate)) | |
module_list.append(GVP(out_dims, out_dims, | |
activations=(None, None))) | |
self.message_func = nn.Sequential(*module_list) | |
def forward(self, x, edge_index, edge_attr): | |
''' | |
:param x: tuple (s, V) of `torch.Tensor` | |
:param edge_index: array of shape [2, n_edges] | |
:param edge_attr: tuple (s, V) of `torch.Tensor` | |
''' | |
x_s, x_v = x | |
message = self.propagate(edge_index, | |
s=x_s, v=x_v.reshape(x_v.shape[0], 3*x_v.shape[1]), | |
edge_attr=edge_attr) | |
return _split(message, self.vo) | |
def message(self, s_i, v_i, s_j, v_j, edge_attr): | |
v_j = v_j.view(v_j.shape[0], v_j.shape[1]//3, 3) | |
v_i = v_i.view(v_i.shape[0], v_i.shape[1]//3, 3) | |
message = tuple_cat((s_j, v_j), edge_attr, (s_i, v_i)) | |
message = self.message_func(message) | |
return _merge(*message) | |
class GVPConvLayer(nn.Module): | |
''' | |
Full graph convolution / message passing layer with | |
Geometric Vector Perceptrons. Residually updates node embeddings with | |
aggregated incoming messages, applies a pointwise feedforward | |
network to node embeddings, and returns updated node embeddings. | |
To only compute the aggregated messages, see `GVPConv`. | |
:param node_dims: node embedding dimensions (n_scalar, n_vector) | |
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector) | |
:param n_message: number of GVPs to use in message function | |
:param n_feedforward: number of GVPs to use in feedforward function | |
:param drop_rate: drop probability in all dropout layers | |
:param autoregressive: if `True`, this `GVPConvLayer` will be used | |
with a different set of input node embeddings for messages | |
where src >= dst | |
''' | |
def __init__(self, node_dims, edge_dims, vector_gate=False, | |
n_message=3, n_feedforward=2, drop_rate=.1, | |
autoregressive=False, attention_heads=0, | |
conv_activations=(F.relu, torch.sigmoid), | |
n_edge_gvps=0, layernorm=True, eps=1e-8): | |
super(GVPConvLayer, self).__init__() | |
if attention_heads == 0: | |
self.conv = GVPConv( | |
node_dims, node_dims, edge_dims, n_layers=n_message, | |
vector_gate=vector_gate, | |
aggr="add" if autoregressive else "mean", | |
activations=conv_activations, | |
eps=eps, | |
) | |
else: | |
raise NotImplementedError | |
if layernorm: | |
self.norm = nn.ModuleList([LayerNorm(node_dims, eps=eps) for _ in range(2)]) | |
else: | |
self.norm = nn.ModuleList([nn.Identity() for _ in range(2)]) | |
self.dropout = nn.ModuleList([Dropout(drop_rate) for _ in range(2)]) | |
ff_func = [] | |
if n_feedforward == 1: | |
ff_func.append(GVP(node_dims, node_dims, activations=(None, None))) | |
else: | |
hid_dims = 4*node_dims[0], 2*node_dims[1] | |
ff_func.append(GVP(node_dims, hid_dims, vector_gate=vector_gate)) | |
for i in range(n_feedforward-2): | |
ff_func.append(GVP(hid_dims, hid_dims, vector_gate=vector_gate)) | |
ff_func.append(GVP(hid_dims, node_dims, activations=(None, None))) | |
self.ff_func = nn.Sequential(*ff_func) | |
self.edge_message_func = None | |
if n_edge_gvps > 0: | |
si, vi = node_dims | |
se, ve = edge_dims | |
module_list = [ | |
GVP((2*si + se, 2*vi + ve), edge_dims, vector_gate=vector_gate) | |
] | |
for i in range(n_edge_gvps - 2): | |
module_list.append(GVP(edge_dims, edge_dims, | |
vector_gate=vector_gate)) | |
if n_edge_gvps > 1: | |
module_list.append(GVP(edge_dims, edge_dims, | |
activations=(None, None))) | |
self.edge_message_func = nn.Sequential(*module_list) | |
if layernorm: | |
self.edge_norm = LayerNorm(edge_dims, eps=eps) | |
else: | |
self.edge_norm = nn.Identity() | |
self.edge_dropout = Dropout(drop_rate) | |
def forward(self, x, edge_index, edge_attr, | |
autoregressive_x=None, node_mask=None): | |
''' | |
:param x: tuple (s, V) of `torch.Tensor` | |
:param edge_index: array of shape [2, n_edges] | |
:param edge_attr: tuple (s, V) of `torch.Tensor` | |
:param autoregressive_x: tuple (s, V) of `torch.Tensor`. | |
If not `None`, will be used as srcqq node embeddings | |
for forming messages where src >= dst. The corrent node | |
embeddings `x` will still be the base of the update and the | |
pointwise feedforward. | |
:param node_mask: array of type `bool` to index into the first | |
dim of node embeddings (s, V). If not `None`, only | |
these nodes will be updated. | |
''' | |
if self.edge_message_func: | |
src, dst = edge_index | |
if autoregressive_x is None: | |
x_src = x[0][src], x[1][src] | |
else: | |
mask = (src < dst).unsqueeze(-1) | |
x_src = ( | |
torch.where(mask, x[0][src], autoregressive_x[0][src]), | |
torch.where(mask.unsqueeze(-1), x[1][src], | |
autoregressive_x[1][src]) | |
) | |
x_dst = x[0][dst], x[1][dst] | |
x_edge = ( | |
torch.cat([x_src[0], edge_attr[0], x_dst[0]], dim=-1), | |
torch.cat([x_src[1], edge_attr[1], x_dst[1]], dim=-2) | |
) | |
edge_attr_dh = self.edge_message_func(x_edge) | |
edge_attr = self.edge_norm(tuple_sum(edge_attr, | |
self.edge_dropout(edge_attr_dh))) | |
if autoregressive_x is not None: | |
src, dst = edge_index | |
mask = src < dst | |
edge_index_forward = edge_index[:, mask] | |
edge_index_backward = edge_index[:, ~mask] | |
edge_attr_forward = tuple_index(edge_attr, mask) | |
edge_attr_backward = tuple_index(edge_attr, ~mask) | |
dh = tuple_sum( | |
self.conv(x, edge_index_forward, edge_attr_forward), | |
self.conv(autoregressive_x, edge_index_backward, edge_attr_backward) | |
) | |
count = scatter_add(torch.ones_like(dst), dst, | |
dim_size=dh[0].size(0)).clamp(min=1).unsqueeze(-1) | |
dh = dh[0] / count, dh[1] / count.unsqueeze(-1) | |
else: | |
dh = self.conv(x, edge_index, edge_attr) | |
if node_mask is not None: | |
x_ = x | |
x, dh = tuple_index(x, node_mask), tuple_index(dh, node_mask) | |
x = self.norm[0](tuple_sum(x, self.dropout[0](dh))) | |
dh = self.ff_func(x) | |
x = self.norm[1](tuple_sum(x, self.dropout[1](dh))) | |
if node_mask is not None: | |
x_[0][node_mask], x_[1][node_mask] = x[0], x[1] | |
x = x_ | |
return x, edge_attr | |